Manganese doped inorganic halide perovskites continue to be of current interest for applications in light emitting devices and down-converters in solar cells. In this work we prepared Mn doped CsPbCl3 (Mn: CPC) bulk crystals and nano-particles (NPs) and compared their emission properties. Bulk crystals were grown from the melt by vertical Bridgman technique and NPs were synthesized using a microwave assisted method. Under ultraviolet excitation at 350 nm, bulk crystal and NPs exhibited a broad orange emission centered in the ~600 nm range at room temperature. The broadband emission was assigned to the intra-3d transition 4T1 → 6A1 of Mn2+ ions incorporated in the CPC host lattice. The Mn2+ emission lifetimes were nearly exponential with values of 1.1 ms for NPs and 0.7 ms for the bulk crystal. NPs also showed exciton emission peaking at ~402 nm, whereas the bulk crystal exhibited no emission near the band-edge. Instead, the bulk material revealed a weak below-gap emission in the 450-550 nm region suggesting the existence of defect states. The excitation spectra for the orange Mn2+ emission from NPs and bulk crystals of Mn: CPC were significantly different indicating distinct excitation pathways. The excitation spectrum of the orange Mn2+ emission from NPs showed excitonic structure similar to the absorption spectrum suggesting an efficient energy transfer from excitons to Mn2+ ions. In contrast, UV excitation was less efficient for the bulk crystal and the excitation was dominated by below-gap excitation bands centered at 427 and 500 nm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.