In this presentation we describe the application of a previously developed technique that is now being used to correct the daytime polarization calibration of the CALIPSO lidar. The technique leverages the fact that the solar radiation background signals from dense cirrus clouds are largely unpolarized due to the internal multiple reflections within the non-spherical ice particles and the multiple scattering that occurs among these particles. Therefore, the ratio of polarization components of the cirrus background signals provides a good estimate for the polarization gain ratio (PGR) of the lidar. However, in the visible and ultraviolet regime, the molecular contribution is too large to be ignored, and thus corrections must be applied to account for the highly polarizing characteristics of the molecular scattering. This presentation describes the theory and implementation of the molecular scattering correction.
The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), an instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), was operated as an atmospheric lidar system to study the impact of clouds and aerosols on the Earth’s radiation budget and climate. This paper discusses the receiver transient response of the CALIOP instrument, which is useful for getting a reliable attenuated backscatter profile from CALIOP data products. The noise tail effect (slow decaying rate) of PMT and broadening effect of the
low-pass filter are both considered in modeling of the receiver transient response. An analytical expression of the CALIOP transient response function was obtained by the least square fitting of lidar measurements from land surfaces.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.