The Southern African Large Telescope (SALT) is a 10-m class fixed-elevation telescope with a primary mirror composed of 91 spherically figured one metre segments. A prime focus tracker assembly carries the spherical aberration corrector (SAC) and two of SALT’s instruments, SALTICAM (the acquisition and imaging camera) and the multi-purpose Robert Stobie spectrograph (RSS). Included in the tracker payload is a fibre-instrument feed, that positions ~45m long fibre cables coupled to the spectrographs in thermal enclosures beneath the telescope. These are the High-Resolution Spectrograph (HRS) and NIRWALS (Near InfraRed Washburn Astronomical Laboratories Spectrograph). The other major undertaking is a custom-built laser frequency comb and precision radial velocity data pipeline for the HRS, due in 2025. A novel RSS slit-mask IFU was recently commissioned, adding optical IFU spectroscopy to SALT’s capabilities. Work is also underway to develop a new red channel to turn the RSS into a dual-beam spectrograph. A study done in 2021 investigated the feasibility of building deployable robotic arms equipped with mini SACs to take advantage of SALT’s huge uncorrected field of view. Lastly, a pre-study is now underway to explore options for replacing the SAC and prime focus payload on the tracker to improve telescope performance and make provision for future instrument development.
The Affordable Multiple Aperture Spectroscopy Explorer (AMASE) is a planned high-resolution spatially-resolved spectroscopy survey of the interstellar medium in the Milky Way and nearby galaxies. The prototype telescope and instrument system, AMASE-P, is under development. We provide an update on the instrument design and report the status of this project. A major design change from the previous report is the use of fused silica etched grating in place of VPH grating. The new gratings would provide a significant improvement in the high-efficiency bandwidth of the spectrograph. For fiber positioning on the pseudo-slit, we adopted a new design for the fiber slit blocks to reduce the risk of damaging the fibers during the fiber insertion process and to strengthen the mechanical property of the blocks. We have also chosen octagonal fibers for more uniform near-field and far-field light outputs to yield more stable line spread function. We report the progress of the project and challenges we encountered.
Most optical spectropolarimeters built to date operate as long-slit or point-source instruments; they are inefficient for observations of extended objects such as galaxies and nebulae. 2D spectropolarimetry technique development is a major challenge in astronomical instrumentation. At the South African Astronomical Observatory’s (SAAO) FiberLab, we are developing a spectropolarimetry capable Integral Field front-end called FiberPol(-6D) for the existing SpUpNIC spectrograph on the SAAO’s 1.9 m telescope. SpUpNIC is a general purpose 2 arc-minute long-slit spectrograph with a grating suite covering the wavelength range from 350 to 1000 nm and at spectral resolutions between 500 and 6000. FiberPol generates 6D observational data: x-y spatial dimensions, wavelength, and the three linear Stokes parameters I, q and u. Using a rotating half-wave plate and a Wollaston prism, FiberPol executes two-channel polarimetry, and each channel is fed to an array of 14 fibers, corresponding to a field of view of 10 × 20 arcseconds2 sampled with 2.9 arcsec diameter fiber cores. These fiber arrays are then rerouted to form a pseudo-slit input to SpUpNIC. FiberPol aims to achieve a polarimetric accuracy of 0.1% per spectral resolution bin. Further, it can also function as a non-polarimetric integral-field unit of size 20 × 20 arcseconds2. The instrument design has been completed and it is currently being assembled and characterized in the lab. It is scheduled for on-sky commissioning in the second half of 2024. In this paper, we present the scientific and technical goals of FiberPol, its overall design and initial results from the lab assembly and testing. FiberPol is a low-cost technology demonstrator (< 10, 000 USD), and the entire system predominantly employs small size (one inch or less), commercial off-the-shelve optics and optomechanical components. It can be modified and replicated for use on any existing spectrograph, especially on bigger telescopes like the 10 m Southern African Large Telescope (SALT) and the upcoming 30 m class telescopes.
The performance of fiber-fed astronomical spectrographs is highly influenced by the properties of fibers. The near-field and far-field scrambling characteristics have a profound impact on the line spread function (LSF) of the spectra. Focal ratio degradation (FRD) influences the output beam size, thereby affecting the throughput, as well as the size of the collimator and dispersion elements. While previous research has indicated that these properties depend on the shape of the fiber core and showed that non-circular core fibers can yield uniform near-field scrambling, the result remains inconclusive for far-field. In this study, we investigate the near-field and far-field scrambling properties, along with the FRD, of 50-micron core fibers with different core geometries. We find that in addition to excellent near-field scrambling, octagonal-core fibers can also produce more uniform far-field output when compared to circular-core fibers. They also have less FRD effect when being fed with a f/3 beam.
The AMASE-P project presents a bold exploration into the potential utilization of state-of-the-art commercial photographic lenses and CMOS detectors as integral components in spectrograph designs, thereby offering a cost-effective solution for astronomy instrumentation. In this contribution, we present the current optical design of the telescope and spectrograph system, and present the expected performance of the design, including the point spread function, spectral resolution, throughput, and signal-to-noise ratios. We also present the design of a telecentric corrector for the Canon 400mm f/2.8 III telephoto lens, which is necessary for coupling it to optical fibers.
KEYWORDS: Spectrographs, Telescopes, Stars, Received signal strength, Prisms, Large telescopes, Equipment, Cameras, Vignetting, Light sources and illumination
Three fibre feed integral field units (IFUs), called Slit Mask IFUs (SMI), are being developed in the SAAO fibre-lab for the Robert Stobie Spectrograph (RSS). The smaller, 200 micron fibre IFU (SMI-200) has 309 x 0.9 arcsec diameter spatial elements covering an elongated hexagonal footprint of 18 × 23 arcsec is now being commissioned. The larger, 300 (400) micron fibre IFU, SMI-300 (SMI-400), has 221 × 1.35 arcsec (178 × 1.8 arcsec) diameter spatial elements covering an on-sky area of 18 × 29 sq. arcsec (21 × 44 sq. arcsec). In all SMI units there are two groups of 13 fibres offset by roughly 50 arcsec on either side of the primary array to sample sky. SMI-200 provides a median spectral resolution of 2400 at Hα wavelengths in a low resolution mode simultaneously covering 370 to 740 nm. At a higher grating angles the SMI-200 delivers spectral resolution up to 10,000. A future red spectrograph arm for RSS will extend the simultaneous wavelength coverage up to 900 nm at a median resolution of 6000 for the same IFU. With this upcoming red arm and with the fibre-fed, near-infared spectrograph NIRWALS on SALT, SMI-300 enables wavelength coverage from blue to NIR wavelengths at the same spatial resolution and footprint. The SMI units are inserted in the same fashion as the existing long-slit cassettes at the SALT focal plane. Prismatic fold mirrors direct the focal plane into the fibre IFU and then back into the RSS collimator after the fibres are routed 180 deg within the cassette and formatted into a pseudo-slit. Fold-prisms ensure that the spectrograph collimator continues to see the same focal plane. In this paper we report the laboratory characterization and on-sky commissioning-performance of the first Slit Mask IFU, SMI-200.
The near infrared spectrograph for the Southern African Large Telescope has been developed at the University of Wisconsin. This spectrograph (see Wolf et al., these proceeding) is fiber-IFU fed, and the instrument placed in a -40C freezer in the spectrograph room at SALT. The rectangular 212 fiber object IFU and 38 fiber sky mini-IFU are placed in the fiber instrument feed (FIF) in the SALT payload. The IFUs patrol the telescope field and the separation between them can be adjusted. When the separation changes the bundles automatically tilt to maintain telecentricity. The 43m fibers are individually sheathed in Teflon tubes and placed in one of 4 rugged conduits which feed through the telescope payload, down the telescope truss, through the telescope pintle bearing and into the cooled Spectrograph room. Just outside of the instrument enclosure (freezer) the fibers split out of the conduit via break-out boxes into one of four strain relief boxes in which the fibers are individually layered in take-up loops and then fed through a rubber seal system in the freezer wall. Inside the freezer the fibers route down to the spectrograph slit where they are arrayed in one of 8 v-groove blocks which are individually adjustable in dovetail slots on the slit plate. In this paper we detail the design of the FIF, discuss the design and complex fabrication of the fiber cable; we also discuss the design of the breakout boxes, strain relief box and cold feedthrough. Finally, we will discuss the design and alignment of the fiber slit.
The optical fiber integral field unit (IFU) built to feed the near infrared (NIR) spectrograph for the 11-meter Southern African Large Telescope (SALT) has undergone prototyping and rigorous performance testing at Washburn Astronomical Laboratories of the University of Wisconsin-Madison Astronomy Department. The 43 m length of 256 fibers which make up the object and sky arrays and spares are routed from the SALT payload down into the spectrograph room in four separate cables. The IFU covers 344 arcsec2 on the sky, with the object array spanning a 552 arcsec2 near-rectangular area at roughly 56% fill-factor. Companion papers describe the mechanical design of the fiber cable that mitigates potential sources of mechanical strain on the optical fiber (Smith et al.) and details of the spectrograph (Wolf et al.). Here we present the results of the performance testing of various test cables as well as performance testing and end-to-end mapping of the fully-assembled science cable. The fiber optics experience an extreme temperature gradient at the ingress to the instrument enclosure held at -40 ◦C during operation. We find an increase in focal ratio degradation (FRD) when holding progressively longer lengths of test fiber at reduced temperature. However, we confirm that this temperature dependent FRD is negligible for our designed length of cold fiber. We also find negligible contributions to FRD from the rubber seal that breaches the room temperature strain relief box and the cold instrument enclosure. Our measurements characterize performance including the effects of internal fiber inhomogeneities, stress induced from fiber handling and termination, as well as any imperfections from end-polishing. We present the room-temperature laboratory performance measurements of the fully-assembled science cable; the effective total throughput the fiber cable delivers to the spectrograph collimator is 81±2.5% across all fibers accounting for all losses.
Devasthal Optical Telescope Integral Field Spectrograph (DOTIFS) is a new multi-object integral field spectrograph being built by the Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India for the 3.6m Devasthal Optical Telescope, (DOT). Spectrographs, which disperse the light to study various aspects of the source, traditionally follow long slit to enter the light into to the instrument. However, varying slit width, atmospheric dispersion, crowded object field etc, causes this approach to lose its efficiency. A 2D field access using optical fibres solves most of these issues and introduces additional modularity. However, the circular shape of the fibre tip causes light loss as the fill factor < 80 %. There are mainly two ways to solve these issues, one is with 2D field splicers which are usually mirrors which break the field and reflect the beams in different directions, the other a more convenient alternative is using micro lens arrays (MLA) coupled with optical fibres, increasing the fill factor < 90 %. Even with this advantage, the miss alignment of the optical fibre with the MLA can cause increase in optical entropy and hence loss of effective transmission. Therefore, making a precise fiber to micro-lenslet array holder is a necessity. In DOTIFS which uses a combination of MLA and fibers to transmit the light, the IFU unit of the spectrograph consist of fiber array held on a mask and glued to a micro lenslet array. The plano-convex MLA (PCMLA) forms a hexagonal honeycomb structure of 12×12 spaxels. The on-sky footprint of an IFU is designed to be 8.7”×7.4” for a spatial sampling of 0.8”/300µm. The PCMLA has a thickness of 2.32 mm to create the pupil at its flat surface where fibers would be butted to sample the pupil. Each microlens curved side will receive a f/21.486 beam from the magnifier optics assembly sitting between IFU assembly and the Cassegrain side port selection mirror of the telescope. The microlens converts the incoming beam from the magnifier to f/4.5 beam and creates an ideal pupil of 76µm diameter at its at back surface. In this paper we present deep reactive ion etching technique based fibre holder manufacturing for holding the fibres of IFU of DOTIFS spectrograph. We present the design details, fiber routing scheme, manufacturing and gluing and polishing concepts for fibre holder and the tests and results on the IFU deployment system.
Two fiber integral field units (IFU) are being built in the SAAO fiber-lab for the Robert Stobie Spectrograph's visible arm and the future red arm. The 200 (400) micron fibre IFU has 309 x 0.9 (178 x 1.8) arcsec diameter spatial elements covering an elongated hexagonal footprint of 414 (924) arcsec^2. Each IFU sits in its own slit-mask cassette and is referred to as a slit-mask IFU (SMI). These are inserted in the same fashion as the existing long-slit cassettes at the SALT focal plane. Prismatic fold mirrors direct the focal plane into the fiber IFU and then back into the RSS collimator after the fibres are routed 180 deg within the cassette and formatted into a pseudo-slit. In this paper we describe the design, fabrication, assembly and characterization of Slit Mask IFU.
We describe the optimum telescope focal ratio for a two-element, three-surface, telecentric image-transfer microlens-to-fiber coupled integral field unit within the constraints imposed by microoptics fabrication and optical aberrations. We create a generalized analytical description of the microoptics optical parameters from first principles. We find that the optical performance, including all aberrations, of a design constrained by an analytic model considering only spherical aberration and diffraction matches within ± 4 % of a design optimized by ray-tracing software such as Zemax. The analytical model does not require any compromise on the available clear aperture; about 90% mechanical aperture of hexagonal microlens is available for light collection. The optimum telescope f-ratio for a 200-μm core fiber-fed at f / 3.5 is between f / 7 and f / 12. We find the optimum telescope focal ratio changes as a function of fiber core diameter and fiber input beam speed. A telescope focal ratio of f / 8 would support the largest range of fiber diameters (100 to 500 μm) and fiber injection speeds (between f / 3 and f / 5). The optimization of the telescope and lenslet-coupled fibers is relevant for the design of high-efficiency dedicated survey telescopes, and for retrofitting existing facilities via introducing focal macro-optics to match the instrument input requirements.
We have developed an analytic model for generic image transfer using microlens-coupled fibers to determine the telescope input beam speed that optimizes the lenslet clear aperture and minimizes fiber focal-ratio degradation. Assuming fibers are fed at f/3.5 by the lenslets, our study shows that f/11 is the optimum telescope beam speed to feed a lenslet coupled to a fiber with a 100um diameter core. These considerations are relevant for design of high-efficiency dedicated survey telescopes that employ lenslet-coupled fiber systems.
We present the design of the prototype telescope and spectrograph system for the Affordable Multiple Aperture Spectroscopy Explorer (AMASE) project. AMASE is a planned project that will pair 100 identical multi-fiber spectrographs with a large array of telephoto lenses to achieve a large area integral field spectroscopy survey of the sky at the spatial resolution of half an arcminute and a spectral resolution of R=15,000, covering important emission lines in the optical for studying the ionized gas in the Milky Way and beyond. The project will be enabled by a significant reduction in the cost of each spectrograph unit, which is achieved by reducing the beam width and the use of small-pixel CMOS detectors, 50µm-core optical fibers, and commercial photographic lenses in the spectrograph. Although constrained by the challenging high spectral resolution requirement, we realize a 40% reduction in cost per fiber at constant etendue relative to, e.g., DESI. As the reduction of cost is much more significant than the reduction in the amount of light received per fiber, replicating such a system many times is more cost effective than building a single large spectrograph that achieves the same survey speed. We present the design of the prototype telescope and instrument system and the study of its cost effectiveness.
The development of bare fiber or air-gapped microlens-fiber coupled Integral Field Units (IFUs) for astronomical applications requires careful treatment of the fiber end-faces (terminations). Previous studies suggest that minimization of fiber end face irregularity leads to better optical performance in terms of the diminishing effect of focal ratio degradation. Polishing has typically been performed using commercial rotary polishers with multiple gradually decreasing grit sizes. These polishers generally lack the ability to carefully adjust angular position and polishing force. Control of these parameters vastly help in getting a repeatable and controllable polish over a variety of glass/epoxy/metal matrices that make up integral filed units and fiber slits. A polishing arm is developed to polish the fiber terminations (IFU, mini- bundles and v-grooves) of the NIR Fiber System for the RSS spectrograph at SALT. The polishing arm angular adjustments ensure the correct position and orientation of each termination on the polishing surface during the polish. Various studies have indicated that the fiber focal ratio also degrades if the fiber end face comes under excessive stress. The polishing arm is fitted with a load cell to enable control of the polishing force. We have explored the minimal applicable end stress by applying different loads while polishing. The arm is modular to hold a variety of fiber termination styles. The polishing arm is also designed to access a fiber inspection microscope without removing the fiber termination from the arm. This enables inspection of the finish quality at various stages through polishing process.
The Sloan Digital Sky Survey V (SDSS-V) is an all-sky spectroscopic survey of <6 million objects, designed to decode the history of the Milky Way, reveal the inner workings of stars, investigate the origin of solar systems, and track the growth of supermassive black holes across the Universe. The Local Volume Mapper (LVM) is a facility designed to provide a contiguous 2,500 deg2 integral-field survey over a 3.5 year period from Las Campanas Observatory in Chile. In this paper we provide an overview and status update for the LVM instrument (hereafter LVM-I). Each integral-field unit’s spaxel probes linear scales that are sub-parsec (Milky Way) to ∼10 pc (Magellanic Clouds) which is accomplished with an angular diameter of 36.900. LVM’s spectral resolution is R = λ/∆λ ∼ 4, 000 which probes velocities of 33 kms−1 (1 σ) from 365 nm to 950 nm. LVM uses four 16-cm telescopes feeding three spectrographs. One telescope carries the bulk of the science load with ∼1,800 fibers coupled to the field via a pair of lenslet arrays, two telescopes are used to measure the night sky spectra in fields that flank the science field, and a fourth telescope contemporaneously monitors bright standard stars to determine atmospheric extinction. We expect LVM-I to deliver percent-level precision on important line ratios down to a few Rayleigh. The three spectrographs are being built by Winlight corporation in France based on those for the Dark Energy Spectroscopic Instrument (DESI). In this paper we present the high-level system design of LVM-I including the lenslet-coupled fiber IFUs, telescopes, guiding+acquisition system, calibration systems, enclosures, and spectrographs.
A generic fiber positioning strategy and a fabrication path are presented for microlens-fiber-coupled integral field units (IFUs). It is assumed that microlens-produced microimages are carried to the spectrograph input through a step-index, multimode fiber, but our results apply to micropupil reimaging applications as well. Considered are the performance trades between the filling percentage of the fiber core with the microimage versus throughput and observing efficiency. A merit function is defined as the product of the transmission efficiency and the étendue loss. For a hexagonal packing of spatial elements, the merit function has been found to be maximized to 94% of an ideal fiber IFU merit value (which has zero transmission loss and does not increase the étendue) with a microlens-fiber alignment (centering) tolerance of 1-μm RMS. The maximum acceptable relative tilt between the fiber and the microlens face has been analyzed through optical modeling and found to be 0.3 deg RMS for input f-ratio slower than f / 3.5, but it is much more relaxed for faster beams. From the acceptable tilt, we have deduced a minimum thickness of the fiber holder to be 3 mm for 5 μm clearance in hole diameter relative to the fiber outer diameter. Several options of fabricating fiber holders have been compared to identify cost-effective solutions that deliver the desired fiber positioning accuracy. Femto-second laser-drilling methods from commercial vendors deliver holes arrayed on plates with a relative position accuracy of ±1.5-μm RMS, similar diameter accuracy, and with an aspect ratio of 1:10 (diameter:thickness). One commercial vendor combines femtosecond laser-drilling with photolithographic etching to produce plates with thickness of 5 mm, but with similar (±1-μm RMS) positioning accuracy and conical entry ports. Both of these techniques are found to be moderately expensive. A purely photolithographic technique performed at Wisconsin Center for Advanced Microelectronics (a facility at the University of Wisconsin, Madison), in tandem with deep reactive ion etching, has been used to produce a repeatable recipe with 100% yield. Photolithography is more precise (0.5-μm RMS) in terms of hole positioning and similar diameter accuracy (1-μm RMS) but the plate can only have a thickness of 250 μm.
The IUCAA digital sampling array controller (IDSAC) is a flexible and generic yet powerful CCD controller that can handle a wide range of scientific detectors. Based on an easily scalable modular backplane architecture consisting of single board controllers (SBC), IDSAC can control large detector arrays and mosaics. Each of the SBCs offers the full functionality required to control a CCD independently. The SBCs can be cold swapped without the need to reconfigure them. IDSAC is also available in a backplane-less architecture. Each SBC can handle data from up to four video channels with or without dummy outputs at speeds up to 500-kilo pixels per second (kPPS) per channel with a resolution of 16 bits. Communication with a Linux-based host computer is through a USB3.0 interface, with the option of using copper or optical fibers. A field programmable gate array (FPGA) is used as the master controller in each SBC, which allows great flexibility in optimizing performance by adjusting gain, timing signals, bias levels, etc., using user-editable configuration files without altering the circuit topology. Elimination of thermal kTC noise is achieved via digital correlated double sampling (DCDS). The number of digital samples per pixel (for both reset and signal levels) is user configurable. We present the results of noise performance characterization of IDSAC through simulation, theoretical modeling, and actual measurements. The contribution of different types of noise sources is modeled using a tool to predict noise of a generic DCDS signal chain analytically. The analytical model predicts the net input referenced noise of the signal chain to be 5 electrons for 200-k pixels/s per channel readout rate with three samples per pixel. Using a cryogenic test setup in the lab, the noise is measured to be 5.4 e (24.3 μV), for the same readout configuration. With a better-optimized configuration of 500-kPPS readout rate, the measured noise is down to 3.8 electrons RMS (17 μV), with three samples per interval.
A new field re-configuration technique, Multiple Rooks of Chess, for multiple deployable Integral Field Spectrographs has been developed. The method involves a mechanical geometry as well as an optimized deployment algorithm. The geometry is found to be simple for mechanical implementation. The algorithm initially assigns the IFUs to the target objects and then devises the movement sequence based on the current and the desired IFU positions. The reconfiguration time using the suitable actuators which runs at 20 cm/s is found to be a maximum of 25 seconds for the circular DOTIFS focal plane (180 mm diameter). It is similar to some of the fastest schemes currently available. The Geometry Algorithm Combination (GAC) has been tested on several million mock target configurations with object-to-IFU ( τ ) ratio varying from 0.25 to 16. The configuration had both contiguous and sparse distribution of targets. The MRC method is found to be extremely efficient in target acquisition in terms of field revisit and deployment time without any collision or entanglement of the fiber bundles. The efficiency of the technique does not get affected by the increase of number density of target objects. For field with τ >1 prioritization of target objects is an optional feature and not necessary. The GAC can be modified for an instrument with higher or lower number of IFUs and different field size without any significant change in the flow. The technique is compared with other available methods based on sky coverage, flexibility and overhead time. The proposed geometry and algorithm combination is found to have advantage in all of the aspects.
Long-slit astronomical spectroscopy has various limitations when dealing with optimum slit width, atmospheric dispersion, extended source spectroscopy, etc. to name a few. Most of these issues can be solved by the use of optical fibers as the light carrier from the telescope focal plane to the spectrograph. The approach is technically and scientifically flexible in terms of instrument modularity and target acquisition. Implementation of Integral Field Unit (IFU) provides a continuous sampling of extended objects and has a distinct advantage over the single fiber. Using a microlens array in front of the fibers improves the sky coverage by increasing the fill factor. Devasthal Optical Telescope Integral Field Spectrograph (DOTIFS) is a novel instrument being built by the Inter-University Centre for Astronomy and Astrophysics, Pune for the 3.6m Devasthal Optical Telescope (DOT) constructed by Aryabhatta Research Institute of Observational Sciences, Nainital. Each of the 16 DOTIFS IFUs consist of 12x12 spatial elements (spaxels) distributed in a hexagonal honeycomb structure covering 8.7"x7.8" in the sky. Each IFU is made by a photolithography technique to transfer the corresponding microlens array pattern to create a mask which holds the fibers at the focal plane end of an integral field unit. These masks are aligned with the microlens array and fibers are inserted before gluing and polishing. The fiber array can be positioned with a peak positioning error less than 5 μm from the desired position within a fiber array, compared to a requirement of 10 μm. The slit end is made by wire EDM cutting technology and fibers are placed with an accuracy of ~0.3 pixels compared to a 6.75 pixel center-to-center gap between two spectra on the detector. In this paper we provide details of deriving requirements and error budgets. The process of photolithography and the use of generated masks to create an IFU are also discussed. The technique allows very cost effective mass production of IFUs which are very accurately matched with the corresponding microlens array.
We present fore-optics and calibration unit design of Devasthal Optical Telescope Integral Field Spectrograph (DOTIFS). DOTIFS fore-optics is designed to modify the focal ratio of the light and to match its plate scale to the physical size of Integral Field Units (IFUs). The fore-optics also delivers a telecentric beam to the IFUs on the telescope focal plane. There is a calibration unit part of which is combined with the fore-optics to have a light and compact system. We use Xenon-arc lamp as a continuum source and Krypton/Mercury-Neon lamps as wavelength calibration sources. Fore-optics and calibration unit shares two optical lenses to maintain compactness of the overall subsystem. Here we present optical and opto-mechanical design of the calibration unit and fore-optics as well as calibration scheme of DOTIFS.
Devasthal Optical Telescope Integral Field Spectrograph (DOTIFS) is a new multi-Integral Field Unit (IFU) instrument, planned to be mounted on the 3.6m Devasthal optical telescope in Nainital, India. It has eight identical, fiber-fed spectrographs to disperse light coming from 16 IFUs. The spectrographs produce 2,304 spectra over a 370-740nm wavelength range simultaneously with a spectral resolution of R=1200-2400. It is composed of all-refractive, allspherical optics designed to achieve on average 26.0% throughput from the telescope to the CCD with the help of high transmission spectrograph optics, volume phase holographic grating, and graded coated e2v 2K by 4K CCD. We present the optical and opto-mechanical design of the spectrograph as well as current development status. Optics and optomechanical components for the spectrographs are being fabricated.
KEYWORDS: Charge-coupled devices, Video processing, Cadmium sulfide, Video, Analog electronics, Interference (communication), Clocks, Sensors, Power supplies, Signal to noise ratio
In order to run the large format detector arrays and mosaics that are required by most astronomical instruments, readout electronic controllers are required which can process multiple CCD outputs simultaneously at high speeds and low noise levels. These CCD controllers need to be modular and configurable, should be able to run multiple detector types to cater to a wide variety of requirements. IUCAA Digital Sampler Array Controller (IDSAC), is a generic CCD Controller based on a fully scalable architecture which is adequately flexible and powerful enough to control a wide variety of detectors used in ground based astronomy. The controller has a modular backplane architecture that consists of Single Board Controller Cards (SBCs) and can control up to 5 CCDs (mosaic or independent). Each Single Board Controller (SBC) has all the resources to a run Single large format CCD having up to four outputs. All SBCs are identical and are easily interchangeable without needing any reconfiguration. A four channel video processor on each SBC can process up to four output CCDs with or without dummy outputs at 0.5 Megapixels/Sec/Channel with 16 bit resolution. Each SBC has a USB 2.0 interface which can be connected to a host computer via optional USB to Fibre converters. The SBC uses a reconfigurable hardware (FPGA) as a Master Controller. IDSAC offers Digital Correlated Double Sampling (DCDS) to eliminate thermal kTC noise. CDS performed in Digital domain (DCDS) has several advantages over its analog counterpart, such as - less electronics, faster readout and easier post processing. It is also flexible with sampling rate and pixel throughput while maintaining the core circuit topology intact. Noise characterization of the IDSAC CDS signal chain has been performed by analytical modelling and practical measurements. Various types of noise such as white, pink, power supply, bias etc. has been considered while creating an analytical noise model tool to predict noise of a controller system like IDSAC. Several tests are performed to measure the actual noise of IDSAC. The theoretical calculation matches very well with practical measurements within 10% accuracy.
KEYWORDS: Sensors, Wavefront sensors, Control systems, Analog electronics, Multiplexers, Stars, Field programmable gate arrays, Power supplies, Electrons, Interfaces
As a part of a design study for the On-Instrument Low Order Wave-front Sensor (OIWFS) for the TMT Infra-Red Imaging Spectrograph (IRIS), we recently evaluated the noise performance of a detector control system consisting of IUCAA SIDECAR DRIVE ELECRONICS CONTROLLER (ISDEC), SIDECAR ASIC and HAWAII-2RG (H2RG) MUX. To understand and improve the performance of this system to serve as a near infrared wavefront sensor, we implemented new read out modes like multiple regions of interest with differential multi-accumulate readout schemes for the HAWAII-2RG (H2RG) detector. In this system, the firmware running in SIDECAR ASIC programs the detector for ROI readout, reads the detector, processes the detector output and writes the digitized data into its internal memory. ISDEC reads the digitized data from ASIC, performs the differential multi-accumulate operations and then sends the processed data to a PC over a USB interface. A special loopback board was designed and used to measure and reduce the noise from SIDECAR ASIC DC biases2. We were able to reduce the mean r.m.s read noise of this system down to 1-2 e. for any arbitrary window frame of 4x4 size at frame rates below about 200 Hz.
Devasthal Optical Telescope Integral Field Spectrograph (DOTIFS) is a new multi-object Integral Field Spectrograph
(IFS) being designed and fabricated by the Inter-University Center for Astronomy and Astrophysics (IUCAA), Pune,
India, for the Cassegrain side port of the 3.6m Devasthal Optical Telescope, (DOT) being constructed by the Aryabhatta
Research Institute of Observational Sciences (ARIES), Nainital. It is mainly designed to study the physics and
kinematics of the ionized gas, star formation and H II regions in the nearby galaxies. It is a novel instrument in terms of
multi-IFU, built in deployment system, and high throughput. It consists of one magnifier, 16 integral field units (IFUs),
and 8 spectrographs. Each IFU is comprised of a microlens array and optical fibers and has 7.4” x 8.7” field of view with
144 spaxel elements, each sampling 0.8” hexagonal aperture. The IFUs can be distributed on the telescope side port over
an 8’ diameter focal plane by the deployment system. Optical fibers deliver light from the IFUs to the spectrographs.
Eight identical, all refractive, dedicated spectrographs will produce 2,304 R~1800 spectra over 370-740nm wavelength
range with a single exposure. Volume Phase Holographic gratings are chosen to make smaller optics and get high
throughput. The total throughput of the instrument including the telescope is predicted as 27.5% on average. Observing
techniques, data simulator and reduction software are also under development. Currently, conceptual and baseline design
review has been done. Some of the components have already been procured. The instrument is expected to see its first
light in 2016.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.