The multi-mJ, 21-nm soft-x-ray laser at the PALS facility was focused on the surface of amorphous carbon (a-C) coating, developed for heavily loaded XUV/x-ray optical elements. AFM (Atomic Force Microscopy) images show 3-micrometer expansion of the irradiated material. Raman spectra, measured with an Ar+ laser microbeam in both irradiated and unirradiated areas, confirm a high degree of graphitization in the irradiated layer. In addition to this highfluence (~ 1 J/cm2), single-shot experiment, it was necessary to carry out an experiment to investigate consequences of prolonged XUV irradiation at relatively low fluence. High-order harmonic (HH) beam generated at the LUCA facility in CEA/Saclay Research Center was used as a source of short-wavelength radiation delivering high-energy photons on the surface at a low single-shot fluence but with high-average power. a-C irradiated at a low fluence, i.e., < 0.1 mJ/cm2 by many HH shots exhibits an expansion for several nanometers. Although it is less dramatic change of surface morphology than that due to single-hot x-ray-laser exposure even the observed nanometer-sized changes caused by the HH beam on a-C surface could influence reflectivity of a grazing incidence optical element. These results seem to be important for estimating damages to the surfaces of highly irradiated optical elements developed for guiding and focusing the ultraintense XUV/x-ray beams provided by new generation sources (i.e., VUV FEL and XFEL in Hamburg; LCLS in Stanford) because, up to now, only melting and vaporization, but not graphitization, have been taken into account.
A free electron laser (FEL) is being set up at DESY (Deutsches Elektronen Synchrotron, Hamburg, Germany). In the current XUV range of the FEL, total-reflection X-ray mirrors are needed for beam guidance, beam alignment, and monochromatisation. Such X-ray optics are used at a grazing incidence angle of about 2°; thus a maximum length of about 500 mm is required. Due to the working range of the FEL (50 - 200 eV), carbon has been selected as a suitable material with an absorption edge at 284 eV. The amorphous carbon coatings were manufactured by magnetron sputtering in a special UHV system for large deposition at GKSS research centre (Geesthacht, Germany). The variation in film thickness over the whole length has been investigated by X-ray reflectometry (XRR). Good uniformity (better than 2 %) and low roughness (< 0.5 nm) have been observed.
As part of the TESLA (TeV-Energy Superconducting Linear Accelerator) project a free electron laser (FEL) in the XUV (Extreme Ultra-Violet, (6-200 eV)) and X-ray (0.5-15 keV) range is being developed at DESY (Deutsches Elektronen Synchrotron, Hamburg). At the TESLA Test Facility (TTF) a prototype FEL has recently demonstrated maximum light amplification in the range of 80 nm to 120 nm. It is expected that the FEL will provide intense, sub-picosecond radiation pulses with photon energies up to 200 eV in the next development stage. In a joint project between DESY and GKSS, thin film optical elements with very high radiation stability, as required for FEL applications, are currently being developed.
Sputter-deposited amorphous carbon coatings have been prepared for use as total reflection X-ray mirrors. The optical characterization of the mirrors has been carried out using the soft X-ray reflectometer at HASYLAB (Hamburger Synchrotronstrahlungslabor) beamline G1. The reflectivity of the carbon films at 2 deg incidence angle is close to the theoretical reflectivity of 95.6 %, demonstrating the high quality of the coatings. For comparison, layers produced by different methods (e.g. Chemical vapor deposition, Pulsed laser deposition) have been characterized as well.
Annealing experiments have been performed to evaluate the thermal stability of the amorphous carbon films. Further investigations concerning the radiation stability of the X-ray mirrors have also been conducted. The mirrors were irradiated in the FELIS (Free Electron Laser-Interaction with Solids) experiment at the TTF-FEL. Microscopic investigations demonstrate that the carbon mirrors are fairly stable.
A free electron laser for the XUV spectral range is currently under test at the TESLA Test Facility at DESY. High gain has been demonstrated below 100nm wavelength, and it is expected that the FEL will provide intense, sub-picosecond radiation pulses with photon energies up to 200eV. Thin film optical elements required for this facility are currently being developed by the X-ray optics group of the GKSS research center near Hamburg. Sputter-deposited coatings have been prepared for the use as total reflection X-ray mirrors for FEL beam optics. Coatings of low Z elements with the lowest possible absorption and high reflectivity have been investigated. Silicon substrates have been coated with carbon using different deposition conditions. The films were investigated using the soft X-ray reflectometer at the HASYLAB beamline G1. The measurements show that the reflectivity of the films is typically 90% at energies below 200eV and a grazing incidence angle of 4 degrees. The optical constants of these coatings obtained from the reflectivity measurements and are in agreement with tabulated values. The deposition parameters have been optimized resulting in argon contamination free films with near-theoretical performance. Preliminary investigations concerning the heat resistance of the films were also carried out.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.