The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory contains a 192-beam 4.2 MJ neodymium glass laser (around 1053 nm or 1w) that is frequency converted to 351nm light or 3w. It was built to access the extreme high energy density conditions needed to support the nation’s nuclear stockpile in the absence of further underground nuclear tests, including studying Inertial Confinement Fusion (ICF) and ignition in the laboratory.
Over the last year, important results have been obtained demonstrated a fusion yield of 1.35MJ with 1.9MJ of laser energy (and 440 TW power) injected in the target, bringing the NIF to the threshold of ignition [2-3]. As the yield curve near ignition is steep, the laser performance team has focused on providing improved power accuracy and precision (better shot-to-shot reproducibility) with a high-fidelity pulse shaping system (HiFiPS), and also on extending the NIF operating power and energy space by 15% to 2.2MJ and 500TW.
The Matter in Extreme Conditions Upgrade (MEC-U) project is a major upgrade to the MEC instrument on the Linac Coherent Light Source (LCLS) X-ray free electron laser (XFEL) user facility at SLAC National Accelerator Laboratory. The MEC instrument combines the XFEL with a high-power, short-pulse laser and high energy shock driver laser to produce and study high energy density plasmas and materials found in extreme environments such as the interior of stars and fusion reactors, providing the fundamental understanding needed for applications ranging from astronomy to fusion energy. When completed, this project will significantly increase the power and repetition rate of the MEC high intensity laser system to the petawatt level at up to 10 Hz, increase the energy of the shock-driver laser to the kilojoule level, and expand the capabilities of the MEC instrument to support groundbreaking experiments enabled by the combination of high-power lasers with the world’s brightest X-ray source. Lawrence Livermore National Laboratory (LLNL) is developing a directly diode-pumped, 10 Hz repetition rate, 150 J, 150 fs, 1 PW laser system to be installed in the upgraded MEC facility. This laser system is an implementation of LLNL’s Scalable High power Advanced Radiographic Capability (SHARC) concept and is based on chirped pulse amplification in the diode-pumped, gas-cooled slab architecture developed for the Mercury and HAPLS laser systems. The conceptual design and capabilities of this laser system will be presented.
In this work, we will review and evaluate the laser-induced optics damage observed on the final compressor gratings of the Advanced Radiographic Capability (ARC) laser. Damage initiation and growth rules are derived from online inspections and both measured and modeled laser performance are compared to a laser damage performance assessment of compressor grating witness samples performed offline. In addition, we will report the result of adapting these damage and growth rules to conditions relevant for the Scalable High-average-power Advanced Radiographic Capability (SHARC) 10 Hz Petawatt laser concept.
The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory contains a
192-beam 4.2 MJ neodymium glass laser (around 1053 nm or 1w) that is frequency converted to
351nm light or 3w. It has been designed to support the study of Inertial Confinement Fusion (ICF)
and High Energy Density Physics (HEDP). The NIF Precision Diagnostic System (PDS) was reactivated and new
diagnostic packages were designed and fielded that offer a more comprehensive suite
of high-resolution measurements. The current NIF laser performance will be presented as well as the preliminary results obtained with the various laser experimental campaigns using the new diagnostic tool suites.
New control techniques are required to utilize the full potential of next generation high-energy high-repetition-rate pulses lasers while ensuring their safe operation. During automated optimization of an experiment, the control system is required to identify and reject unsafe laser configurations proposed by the optimizer. Using conventional physics codes render impossible when applied to a high energy laser system with 1ms or less time between shots, and also including laser fluctuations and drift. To mitigate this, we are using a deep Bayesian neural network to map the laser’s input power spectrum to its output power spectrum and demonstrate the speed of this approach. The Bayesian neural network can provide an estimate of its own uncertainty as a function of wavelength. A recently developed algorithm enables the uncertainty to be calculated inexpensively using multiple dropout layers inserted into the model. The uncertainty estimates are used by an active learning algorithm to improve the accuracy of the model and intelligently explore the input domain.
A laser system made of two beams of 10 PW each has been designed and is currently built for ELI-NP research infrastructure. Design is presented as well as preliminary results up to the 1PW level amplifier.
In this paper, we present a new photonic technique for producing large time delay of radio-frequency (RF)
modulated optical signals and its application in a novel true-time-delay (TTD) multiple beam-forming system
for wideband RF phased-array antennas using Fourier optics. The RF signal to be delayed is modulated onto
a broadband optical carrier in a frequency-mapped manner by an acousto-optic tunable filter (AOTF). Due to
the phased-matched acousto-optic interaction and the moving nature of the acoustic waves in the AOTF, di.erent
frequency components of the optical carrier are only modulated and Doppler-shifted by the corresponding
frequencies of the modulating RF signal. Heterodyne detection between the modulated optical beam and a timealigned
reference beam from the same light source can recover the modulating RF signal. When a small optical
path length di.erence is introduced between the heterodyne beams, a large RF time delay magnified by the
frequency ratio between the optics and the RF will be generated, which we refer to as the sluggish-light effect.
Sluggish light has potential applications in TTD beam forming for wideband RF phased-array antennas and
proof-of-concept experiments of the sluggish-light based TTD beam forming for an emulated 2- and 4-channel
RF array will be presented in this paper.
In this paper, we present a novel approach for broadband RF photonic signal processing using a femtosecond laser and an Acousto-Optic Tunable Filter (AOTF). We demonstrate that by using spectral filtering in the AOTF, we are able to map each frequency component of the broadband RF signal onto a corresponding set of frequency comb lines of a femtosecond pulse train. The time domain interpretation of this RF to optical frequency mapping yields a femtosecond pulse shaping operation, which is in distinct contrast to the conventional double sideband amplitude modulation of a CW carrier used in RF photonic links. The interaction with a traveling acoustic wave in the AOTF leads to Doppler shift of each frequency comb line by its corresponding RF conterpart, which allows the recovery of the encoded RF signal by heterodyne detection with an unmodulated reference pulse train. As a proof of concept, we experimentally demonstrated mapping of 10 MHz bandwidth RF signals onto 65 nm FWHM optical bandwidth of a 2 GHz repetition rate femtosecond laser using a commercial AOTF and a 40 MHz bandwidth RF signal mapping using a supercontinuum source. Optical processing functions such as RF bandpass/notch filtering can be achieved in the optical domain using optical filters, thereby avoiding the limitations of RF analog filters. Down-conversion naturally occurs based on the laser repetition rate.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.