Proceedings Article | 22 June 2012
Proc. SPIE. 8359, Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense XI
KEYWORDS: Signal to noise ratio, Oscillators, Sensors, Interference (communication), Receivers, Electronic components, Signal processing, Antennas, Signal detection, Received signal strength
Traditional approach of locating devices relies on "tagging" with a special tracking device, for example GPS receiver.
This process of tagging is often impractical and costly since additional devices may be necessary. Conversely, in many
applications it is desired to track electronic devices, which already emit unintentional, passive radio frequency (RF)
signals. These emissions can be used to detect and locate such electronic devices. Existing schemes often rely on a priori
knowledge of the parameters of RF emission, e.g. frequency profile, and work reliably only on short distances. In
contrast, the proposed methodology aims at detecting the inherent self-similarity of the emitted RF signal by using Hurst
parameter, which (1) allows detection of unknown (not-pre-profiled) devices, (2) extends the detection range over signal
strength (peak-detection) methods, and (3) increases probability of detection over the traditional approaches. Moreover,
the distance to the device is estimated based on the Hurst parameter and passive RF signal measurements such that the
detected device can be located. Theoretical and experimental studies demonstrate improved performance of the proposed
methodology over existing ones, for instance the basic received signal strength (RSS) indicator scheme. The proposed
approach increases the detection range by 70%, the probability of detection by 60%, and improves the range estimation
and localization accuracy by 70%.