NASA’s James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element which contains four science instruments (SI), including a guider. The SIs and guider are mounted to a composite metering structure with outer envelope approximate measurements of 2.2x2.2x1.7m. These SI units are integrated to the ISIM structure and optically tested at NASA Goddard Space Flight Center as an instrument suite using an Optical telescope element SIMulator (OSIM). OSIM is a high-fidelity, cryogenic JWST simulator that features a ~1.5m diameter powered mirror. The SIs are aligned to the flight structure’s coordinate system under ambient, clean room conditions using opto-mechanical metrology and customized interfaces. OSIM is aligned to the ISIM mechanical coordinate system at the cryogenic operating temperature via internal mechanisms and feedback from alignment sensors and metrology in six degrees of freedom. SI performance, including focus, pupil shear, pupil roll, boresight, wavefront error, and image quality, is evaluated at the operating temperature using OSIM. This work reports on the as-run ambient assembly and ambient alignment steps for the flight ISIM, including SI interface fixtures and customization and kinematic mount adjustment. The ISIM alignment plan consists of multiple steps to meet the “absolute” alignment requirements of the SIs and OSIM to the flight coordinate system. In this paper, we focus on key aspects of absolute, optical-mechanical alignment. We discuss various metrology and alignment techniques. In addition, we summarize our approach for dealing with and the results of ground-test factors, such as gravity.
KEYWORDS: James Webb Space Telescope, Cryogenics, Space telescopes, Optical testing, Optical components, Sensors, Signal attenuation, Lamps, Tungsten, Calibration
NASA’s James Webb Space Telescope (JWST) is a 6.5 m diameter, segmented, deployable telescope for cryogenic infrared space astronomy (~40 K). The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SIs), including a guider. The SI and guider units are integrated to the ISIM structure and optically tested at NASA Goddard Space Flight Center as an instrument suite using a telescope simulator (Optical Telescope Element SIMulator; OSIM). OSIM is a high-fidelity, cryogenic JWST telescope simulator that features a ~1.5m diameter powered mirror. The SIs are aligned to the flight structure’s coordinate system under ambient, clean room conditions using optomechanical metrology and customized interfaces. OSIM is aligned to the ISIM mechanical coordinate system at the cryogenic operating temperature via internal mechanisms and feedback from alignment sensors and metrology in six degrees of freedom. SI performance, including focus, pupil shear, pupil roll, boresight, wavefront error, and image quality, is evaluated at the operating temperature using OSIM. The comprehensive optical test plans include drafting OSIM source configurations for thousands of exposures ahead of the start of a cryogenic test campaign. We describe how we predicted the performance of OSIM light sources illuminating the ISIM detectors to aide in drafting these optical tests before a test campaign began. We also discuss the actual challenges and successes of those exposure predictions encountered during a test campaign to fulfill the demands of the ISIM optical performance verification.
NASA’s James Webb Space Telescope (JWST) is a 6.5m diameter, segmented, deployable telescope for cryogenic IR space astronomy (~40K). The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI), including a guider. OSIM is a full field, cryogenic, optical simulator of the JWST OTE. It is the “Master Tool” for verifying the cryogenic alignment and optical performance of ISIM by providing simulated point source/star images to each of the four Science Instruments in ISIM. Included in OSIM is a Pupil Imaging Module (PIM) - a large format CCD used for measuring pupil alignment. Located at a virtual stop location within OSIM, the PIM records superimposed shadow images of pupil alignment reference (PAR) targets located in the OSIM and SI pupils. The OSIM Pupil Imaging Module was described by Brent Bos, et al, at SPIE in 2011 prior to ISIM testing. We have recently completed the third and final ISIM cryogenic performance verification test before ISIM was integrated with the OTE. In this paper, we describe PIM implementation, performance, and measurement results.
KEYWORDS: James Webb Space Telescope, Optical components, Space telescopes, Optical testing, Sensors, Calibration, Data modeling, Human-machine interfaces, Error analysis, Analytical research
NASA’s James Webb Space Telescope (JWST) is a 6.5m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM), that contains four science instruments (SI) and the Fine Guidance Sensor (FGS). The SIs are mounted to a composite metering structure. The SIs and FGS were integrated to the ISIM structure and optically tested at NASA's Goddard Space Flight Center using the Optical Telescope Element SIMulator (OSIM). OSIM is a full-field, cryogenic JWST telescope simulator. SI performance, including alignment and wavefront error, was evaluated using OSIM. We describe test and analysis methods for optical performance verification of the ISIM Element, with an emphasis on the processes used to plan and execute the test. The complexity of ISIM and OSIM drove us to develop a software tool for test planning that allows for configuration control of observations, implementation of associated scripts, and management of hardware and software limits and constraints, as well as tools for rapid data evaluation, and flexible re-planning in response to the unexpected. As examples of our test and analysis approach, we discuss how factors such as the ground test thermal environment are compensated in alignment. We describe how these innovative methods for test planning and execution and post-test analysis were instrumental in the verification program for the ISIM element, with enough information to allow the reader to consider these innovations and lessons learned in this successful effort in their future testing for other programs.
A large depth-of-field Particle Image Velocimeter (PIV) has been developed at NASA GSFC to characterize dynamic
dust environments on planetary surfaces. This instrument detects and senses lofted dust particles. To characterize a
dynamic planetary dust environment, the instrument would have to operate for at least several minutes during an
observation period, easily producing more than a terabyte of data per observation. Given current technology, this
amount of data would be very difficult to store onboard a spacecraft and downlink to Earth. We have been developing
an autonomous image analysis algorithm architecture for the PIV instrument to greatly reduce the amount of data that
it has to store and downlink. The algorithm analyzes PIV images and reduces the image information down to only the
particle measurement data we are interested in receiving on the ground - typically reducing the amount of data to be
handled by more than two orders of magnitude. We give a general description of the PIV algorithms and describe in
detail the algorithm for estimating the direction and velocity of the traveling particles, which was done by taking
advantage of the optical properties of moving dust particles along with image processing techniques.
The Mid Infrared Instrument (MIRI), one of the four instruments on the Integrated Science Instrument Module (ISIM) of
the James Webb Space Telescope (JWST), supports all of the science objectives of the observatory. MIRI optical
alignment is an important step in the verification process, directly affecting mission success. The MIRI optical alignment
is verified on the ground at the integrated ISIM level using an element in the MIRI Filter Wheel, the pupil alignment
reference (PAR), developed by NASA GSFC and provided to MIRI. It is a ~2.3g aluminum piece that has a flat,
specularly reflective, 3mm diameter surface in its center, with laser-etched fiducials within its aperture. The PAR is
illuminated via an optical stimulus (ground support equipment) and imaged using a pupil imaging camera, during the
ISIM test program in order to determine absolute and relative changes in the alignment that impact pupil shear and roll.
Here we describe the MIRI PAR; its physical properties and challenges during its design, manufacturing, and testing.
A high-precision ultra-lightweight 0.5m mirror with ultraviolet grade tolerances on surface figure quality has been
measured from its delivery to the Goddard Space Flight Center, through the coating and mounting process, and shown to
survive component vibration testing. This 4.5kg, 0.5m paraboloid mirror is the prime optic of two sounding-rocket
telescopes: SHARPI (solar high angular resolution photometric imager) and PICTURE (planet imaging concept testbed
using a rocket experiment). By integrating the analysis of interferometer data with finite element models, we
demonstrate the ability to isolate surface figure effects comparable to UV diffraction limited tolerances from much larger
gravity and mount distortions. The ability to measure such features paired with in situ monitoring of mirror figure
through the mirror mounting process has allowed for a diagnosis of perturbations and the remediation of process errors.
In this paper, we describe the technical approach used to achieve nanometer scale measurement accuracy, we report and
decompose the final mounted surface figure of 12.5 nm RMS, and we describe the techniques that were developed and
employed in the pursuit of maintaining UV diffraction-limited performance with this aggressively lightweighted mirror.
The James Webb Space Telescope (JWST) is a space-based, infrared observatory designed to study the early stages of
galaxy formation in the Universe. It is currently scheduled to be launched in 2013 and will go into orbit about the
second Lagrange point of the Sun-Earth system and passively cooled to 30-50 K to enable astronomical observations
from 0.6 to 28 μm. The JWST observatory consists of three primary elements: the spacecraft, the optical telescope
element (OTE) and the integrated science instrument module (ISIM). The ISIM Element primarily consists of a
mechanical metering structure, three science instruments and a fine guidance sensor with significant scientific capability.
One of the critical opto-mechanical alignments for mission success is the co-registration of the OTE exit pupil with the
entrance pupils of the ISIM instruments. To verify that the ISIM Element will be properly aligned with the nominal
OTE exit pupil when the two elements come together, we have developed a cryogenic pupil measurement test
architecture to measure three of the most critical pupil degrees-of-freedom during optical testing of the ISIM Element.
The pupil measurement scheme makes use of: specularly reflective pupil alignment references located inside of the
JWST instruments; ground support equipment that contains a pupil imaging module; an OTE simulator; and pupil
viewing channels in two of the JWST flight instruments. Current modeling and analysis activities indicate this
measurement approach will be able to verify pupil shear to an accuracy of 0.5-1%.
The Solar TErrestrial RElations Observatory (STEREO), the third mission in NASA's Solar Terrestrial Probes program,
was launched in 2006 on a two year mission to study solar phenomena. STEREO consists of two nearly identical
satellites, each carrying an Extreme Ultraviolet Imager (EUVI) telescope as part of the Sun Earth Connection Coronal
and Heliospheric Investigation instrument suite. EUVI is a normal incidence, 98mm diameter, Ritchey-Chrétien
telescope designed to obtain wide field of view images of the Sun at short wavelengths (17.1-30.4nm) using a CCD
detector. The telescope entrance aperture is divided into four quadrants by a mask near the secondary mirror spider
veins. A mechanism that rotates another mask allows only one of these sub-apertures to accept light over an exposure.
The EUVI contains no focus mechanism. Mechanical models predict a difference in telescope focus between ambient
integration conditions and on-orbit operation. We describe an independent check of the ambient, ultraviolet, absolute
focus setting of the EUVI telescopes after they were integrated with their respective spacecraft. A scanning Hartmann-like
test design resulted from constraints imposed by the EUVI aperture select mechanism. This inexpensive test was
simultaneously coordinated with other integration and test activities in a high-vibration, clean room environment. The
total focus test error was required to be better than ±0.05mm. We cover the alignment and test procedure, sources of
statistical and systematic error, data reduction and analysis, and results using various algorithms for determining focus.
The results are consistent with other tests of instrument focus alignment and indicate that the EUVI telescopes meet the
ambient focus offset requirements. STEREO and the EUVI telescopes are functioning well on-orbit.
For potential use on the SHARPI mission, Eastman Kodak has delivered a 50.8cm CA f/1.25 ultra-lightweight UV parabolic mirror with a surface figure error requirement of 6nm RMS. We address the challenges involved in verifying and mapping the surface error of this large lightweight mirror to 3nm RMS using a diffractive CGH null lens. Of main concern is removal of large systematic errors resulting from surface deflections of the mirror due to gravity as well as smaller contributions from system misalignment and reference optic errors. We present our efforts to characterize these errors and remove their wavefront error contribution in post-processing as well as minimizing the uncertainty these calculations introduce. Data from Kodak and preliminary measurements from NASA Goddard will be included.
This report describes the facility and experimental methods at the Goddard Space Flight Center Optics Branch for the measurement of the surface figure of cryogenically-cooled spherical mirrors using standard phase-shifting interferometry, with an uncertainty goal of 6 nm rms. The mirrors to be tested will be spheres with radius of curvature of 600 mm, and clear apertures of 120 - 150 mm. The optic surface will first be measured at room temperature using standard "absolute" techniques with an uncertainty of 2.6 nm rms; and then the change in surface figure error between room temperature and 20 K will be measured with an uncertainty goal of 5.4 nm rms. The mirror will be cooled within a cryostat, and its surface figure error measured through a fused-silica window. The facility and techniques are being developed to measure the cryogenic surface figure error of prototype lightweight mirrors being developed by the European Space Agency (ESA) and by US companies in SBIR's for NASA. This paper will present the measurement facility, methods and uncertainty analysis.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.