We describe an approach to coronagraphic focal-plane wavefront control that utilizes gradient-based nonlinear optimization along with analytical gradients obtained with algorithmic differentiation to find deformable mirror solutions. In addition to eliminating the cost of calculating a high-dimensional finite-difference Jacobian matrix, we show that this approach leads to improved asymptotic computational efficiency. With very high-actuator deformable mirrors such as the 128 × 128 actuators baselined for the Large UV/Optical/IR Surveyor mission concept, the proposed algorithm reduces memory consumption by approximately 95 % compared to a Jacobian-based algorithm.
Due to the limited number of photons, directly imaging planets requires long integration times. The wavefront must be stable on the same time scale which is often difficult in space due to thermal variations and vibrations. In this paper, we discuss the results of implementing a dark hole maintenance (DHM) algorithm (Pogorelyuk et. al. 2019)1 on the High-contrast imager for Complex Aperture Telescopes (HiCAT) at the Space Telescope Science Institute (STScI). The testbed contains a pair of deformable mirrors (DMs) and a lyot coronagraph. The algorithm uses an Extended Kalman Filter (EKF) and DM dithering to predict the drifting electric field in the dark hole along with Electric Field Conjugation to cancel out the drift. The DM dither introduces phase diversity which ensures the EKF converges to the correct value. The DHM algorithm maintains an initial contrast of 8.5 x 10-8 for 6 hrs in the presence of the DM actuator random walk drift with a standard deviation of 1:7 x 10-3 nm/s..
Imaging exo-Earths is an exciting but challenging task because of the 10-10 contrast ratio between these planets and their host star at separations narrower than 100 mas. Large segmented aperture space telescopes enable the sensitivity needed to observe a large number of planets. Combined with coronagraphs with wavefront control, they present a promising avenue to generate a high-contrast region in the image of an observed star. Another key aspect is the required stability in telescope pointing, focusing, and co-phasing of the segments of the telescope primary mirror for long-exposure observations of rocky planets for several hours to a few days. These wavefront errors should be stable down to a few tens of picometers RMS, requiring a permanent active correction of these errors during the observing sequence. To calibrate these pointing errors and other critical low-order aberrations, we propose a wavefront sensing path based on Zernike phase-contrast methods to analyze the starlight that is filtered out by the coronagraph at the telescope focus. In this work we present the analytical retrieval of the incoming low order aberrations in the starlight beam that is filtered out by an Apodized Pupil Lyot Coronagraph, one of the leading coronagraph types for starlight suppression. We implement this approach numerically for the active control of these aberrations and present an application with our first experimental results on the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed, the STScI testbed for Earth-twin observations with future large space observatories, such as LUVOIR and HabEx, two NASA flagship mission concepts.
This paper presents the setup for empirical validations of the Pair-based Analytical model for Segmented Telescope Imaging from Space (PASTIS) tolerancing model for segmented coronagraphy. We show the hardware configuration of the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed on which these experiments will be conducted at an intermediate contrast regime between 10-6 and 10-8. We describe the optical performance of the testbed with a classical Lyot coronagraph and describe the recent hardware upgrade to a segmented mode, using an IrisAO segmented deformable mirror. Implementing experiments on HiCAT is made easy through its top-level control infrastructure that uses the same code base to run on the real testbed, or to invoke the optical simulator. The experiments presented in this paper are run on the HiCAT testbed emulator, which makes them ready to be performed on actual hardware. We show results of three experiments with results from the emulator, with the goal to demonstrate PASTIS on hardware next. We measure the testbed PASTIS matrix, and validate the PASTIS analytical propagation model by comparing its contrast predictions to simulator results. We perform the tolerancing analysis on the optical eigenmodes (PASTIS modes) and on independent segments, then validate these results in respective experiments. This work prepares and enables the experimental validation of the analytical segment-based tolerancing model for segmented aperture coronagraphy with the specific application to the HiCAT testbed.
The goal of the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed is to demonstrate coronagraphic starlight suppression solutions for future segmented aperture space telescopes such as the Large UV, Optical, IR telescope (LUVOIR) mission concept being studied by NASA. The testbed design has the flexibility to enable studies with increasing complexity for telescope aperture geometries starting with off-axis telescopes, then on-axis telescopes with central obstruction and support structures. The testbed implements the Apodized Pupil Lyot Coronagraph (APLC) optimized for the HiCAT aperture, which is similar to one of the possible geometries considered for LUVOIR. Wavefront can be controlled using continuous deformable mirrors, and wavefront sensing is performed using the imaging camera, or a dedicated phase retrieval camera, and also in a low-order wavefront sensing arm. We present a progress update of the testbed in particular results using two deformable mirror control to produce high-contrast dark zone, and preliminary results using the testbed’s low order Zernike wavefront sensor.
We present a numerical study of the diffraction effects and controllability of telescope assembly polarization aberrations on apodized pupil Lyot coronagraph (APLC) and vector vortex coronagraph (VVC) designs for the LUVOIR-A and LUVOIR-B mission concepts. We also examine interactions between polarization aberrations and vector vortex masks, which induce a geometrical helical phase to achieve deep nulling of incident starlight.
Detection and characterization of Earth-like planets around nearby stars using the direct imaging technique is a key scientific objective of future NASA astrophysics flagship missions. As a result, dedicated exoplanet instruments are being studied for the Large UV/Optical/Infrared Surveyor (LUVOIR) and the Habitable Exoplanet Imager (HabEx) mission concepts. In this paper we discuss the Extreme Coronagraph for Living Planetary Systems (ECLIPS) instrument of LUVOIR. ECLIPS will be capable of providing starlight suppression levels of ten orders of magnitude over a broad range of wavelengths in order to detect and characterize the light reflected from potentially Earth-like planets. It will also allow future astronomers to study in great detail the diversity of exoplanets. First, we review the main science drivers and emphasize those that are the most stressing on the instrument design. We then present the overall parameters of the instrument (general architecture and back-end camera). We delve into the details of the static coronagraph masks, which have a significant impact on the scientific productivity of the mission. We discuss the choices the LUVOIR team made in order to maximize the discovery yield of exoEarth candidates. We then present our work on the technological feasibility of such an instrument, focusing in particular on the image stability necessary to achieve ten orders of magnitude of starlight extinction over hours of exposure. We present our error budget and show that using a combination of instrument level (low and high order wavefront sensors) and observatory level telemetry can yield an overall architecture that meets these requirements. Finally, we discuss future technology development efforts that will mature these technologies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.