One of the interesting areas of optical-electronic instrument engineering is the design of coherent optical spectrum analyzers, the principle of operation of which is based on performing the Fourier transformation by a lens. When choosing components for designing the optical system of a coherent spectrum analyzer, it is important to find a compromise between the accuracy of measurements and the cost of the device. In some cases, for example, for research at universities, it is advisable to use inexpensive blocks from household appliances and computer peripherals to create laboratory models of spectrum analyzers. In the article, inexpensive designs of optical spectrum analyzers are proposed, which ensure the acquisition of spatial-frequency spectra of images in real time. One of the variants of such structures is a nozzle for a digital camera.
This work is the result of research and modeling of a set of forces that create the movement of the object with acceleration in a certain direction. The proposed analytical dependences determine the values of the coordinates of spatial locations of technological object, for example, when machining or in the medical diagnosis of pathological formations. An analytical model of maintaining stable spatial coordinates of the object, taking into account the peculiarities of the object's motion, is presented. Further research on the creation of analytical dependences that take into account the influence of external forces on the stability of the object’s spatial coordinates is proposed. This will increase the accuracy of determining the location of the object, which is very important in determining the positioning of the workpiece in the processing of parts, and in determining the spatial coordinates of pathology in the mass of a living organism.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.