Multi-patterning lithography for future technology nodes in logic and memory are driving the allowed on-product overlay error in an DUV and EUV matched machine operation down to values of 2 nm and below. The ASML ORION alignment sensor provides an effective way to deal with process impact on alignment marks. In addition, optimized higher order wafer alignment models combined with overlay metrology based feedforward correction schemes are deployed to control the process induced overlay variability from wafer-to-wafer and lot-to-lot. In addition machine learning based algorithms based on hybrid metrology inputs, strengthen the control capabilities for high volume manufacturing. The increase of the number of process layers in semiconductor devices results in an increase of control complexity of the total overlay and alignment control strategy. This complexity requires a holistic solution approach, that addresses total overlay optimization from process design, to process setup, and process control in high volume manufacturing. We find the optimum combination between feedforward and feedback, by having feedback deal with constant and predictable parts of overlay and have scanner wafer alignment covering the wafer-to-wafer variable part of overlay. In this paper we present investigation results using more wavelengths for wafer alignment and show the benefits in wavelength selection and recipe optimization. We investigate the wafer-to-wafer variable content of two experiment cases and show that a sample scheme of about 60 marks is well capable estimating the model parameters describing the grid. Finally, we show initial results of using level sensor metrology data as hybrid input to the derivation of the exposure grid.
With continuous shrink in feature dimensions, overlay tolerance for fabrication of transistors is getting more stringent. Achieving good overlay is extremely critical in getting good yield in HVM environment. It is widely understood that good alignment during exposure is critical for better on product overlay [1]. Conventional methods to choose alignment marks on ASML scanners are based on comparing alignment key performance indicators (KPIs) including signal quality, grid repeatability, etc. It is possible that even with good alignment KPIs, OPO is still impacted. In this paper, we propose aspects that need to be monitored to choose proper alignment marks. LIS (Litho In-Sight) alignment, Ideal overlay/APC parameter signatures are used to determine and validate wafer alignment. LIS alignment ‘Target and Profile selection’ analysis enables us to determine best alignment strategy between multiple strategies/marks based on overlay measurements. Analysis includes examining wafer to wafer OPO variation which is key indicator for alignment robustness. Varying overlay parameters within lot would indicate either large process instability or alignment mark signal instability. It is possible that alignment marks depending on their segmentation can be very differently impacted with the process. Ideal overlay/APC signature stability indicates healthy process and wafer alignment. Having similar APC signatures at corresponding layers would mean that there is no major process or alignment issue.
To further shrink the contact and trench dimensions, Negative Tone Development (NTD) has become the de facto process at these layers. The NTD process uses a positive tone resist and an organic solvent-based negative tone developer which leads to improved image contrast, larger process window and smaller Mask Error Enhancement Factor (MEEF)[1]. The NTD masks have high transmission values leading to lens heating and as observed here wafer heating as well. Both lens and wafer heating will contribute to overlay error, however the effects of lens heating can be mitigated by applying lens heating corrections while no such corrections exist for wafer heating yet. Although the magnitude of overlay error due to wafer heating is low relative to lens heating; ever tightening overlay requirements imply that the distortions due to wafer heating will quickly become a significant part of the overlay budget. In this work the effects, analysis and observations of wafer heating on contact and metal layers of the 14nm node are presented. On product wafers it manifests as a difference in the scan up and scan down signatures between layers. An experiment to further understand wafer heating is performed with a test reticle that is used to monitor scanner performance.
With decreasing CDOF (Critical Depth Of Focus) for 20/14nm technology and beyond, focus errors are becoming increasingly critical for on-product performance. Current on product focus control techniques in high volume manufacturing are limited; It is difficult to define measurable focus error and optimize focus response on product with existing methods due to lack of credible focus measurement methodologies. Next to developments in imaging and focus control capability of scanners and general tool stability maintenance, on-product focus control improvements are also required to meet on-product imaging specifications. In this paper, we discuss focus monitoring, wafer (edge) fingerprint correction and on-product focus budget analysis through diffraction based focus (DBF) measurement methodology. Several examples will be presented showing better focus response and control on product wafers. Also, a method will be discussed for a focus interlock automation system on product for a high volume manufacturing (HVM) environment.
As leading edge lithography moves to advanced nodes, CDU requirements have relatively increased with technologies 14nm/20nm and beyond. In this paper, we want to introduce the methodology to offer an itemized CDU budget such as Intra-field, Inter-field, wafer to wafer as well as scanner contributors vs. non-scanner contributors (including detailed analysis of reticle contributors like CD, absorber thickness and SWA variation) through Top-Down CDU and Bottom-Up CDU budget breakdown and deliver sources of CD variation with measureable value so that we can estimate CDU gain from them. The test vehicle being used in this experiment is designed based on 14nm D/R basis. Measurement structures are densely located in the slit/scan direction on the reticle for the data collection plan. Hence, we can expand on this methodology to build up the tool reference fingerprint when we release new tool fleet. The final goal will be to establish a methodology for CDU budget breakdown that can be used to draw a conclusion on the root causes of the observed CDU, propose its improvement strategy and estimate the gain.
As the International Technology Roadmap for Semiconductors critical dimension uniformity (CDU) specification shrinks, semiconductor companies need to maintain a high yield of good wafers per day and high performance (and hence market value) of finished products. This cannot be achieved without continuous analysis and improvement of on-product CDU as one of the main drivers for process control and optimization with better understanding of main contributors from the litho cluster: mask, process, metrology and scanner. We will demonstrate a study of mask CDU characterization and its impact on CDU Budget Breakdown (CDU BB) performed for advanced extreme ultraviolet (EUV) lithography with 1D (dense lines) and 2D (dense contacts) feature cases. We will show that this CDU contributor is one of the main differentiators between well-known ArFi and new EUV CDU budgeting principles. We found that reticle contribution to intrafield CDU should be characterized in a specific way: mask absorber thickness fingerprints play a role comparable with reticle CDU in the total reticle part of the CDU budget. Wafer CD fingerprints, introduced by this contributor, may or may not compensate variations of mask CDs and hence influence on total mask impact on intrafield CDU at the wafer level. This will be shown on 1D and 2D feature examples. Mask stack reflectivity variations should also be taken into account: these fingerprints have visible impact on intrafield CDs at the wafer level and should be considered as another contributor to the reticle part of EUV CDU budget. We also observed mask error enhancement factor (MEEF) through field fingerprints in the studied EUV cases. Variations of MEEF may play a role towards the total intrafield CDU and may need to be taken into account for EUV lithography. We characterized MEEF-through-field for the reviewed features, with results herein, but further analysis of this phenomenon is required. This comprehensive approach to quantifying the mask part of the overall EUV CDU contribution helps deliver an accurate and integral CDU BB per product/process and litho tool. The better understanding of the entire CDU budget for advanced EUVL nodes achieved by Samsung and ASML helps extend the limits of Moore’s Law and to deliver successful implementation of smaller, faster and smarter chips in semiconductor industry.
As the ITRS Critical Dimension Uniformity (CDU) specification shrinks, semiconductor companies need to maintain a
high yield of good wafers per day and a high performance (and hence market value) of finished products. This cannot be
achieved without continuous analysis and improvement of on-product CDU as one of the main drivers for process
control and optimization with better understanding of main contributors from the litho cluster: mask, process, metrology
and scanner.
In this paper we will demonstrate a study of mask CDU characterization and its impact on CDU Budget Breakdown
(CDU BB) performed for an advanced EUV lithography with 1D and 2D feature cases.
We will show that this CDU contributor is one of the main differentiators between well-known ArFi and new EUV CDU
budgeting principles. We found that reticle contribution to intrafield CDU should be characterized in a specific way:
mask absorber thickness fingerprints play a role comparable with reticle CDU in the total reticle part of the CDU budget.
Wafer CD fingerprints, introduced by this contributor, may or may not compensate variations of mask CD’s and hence
influence on total mask impact on intrafield CDU at the wafer level. This will be shown on 1D and 2D feature examples
in this paper.
Also mask stack reflectivity variations should be taken into account: these fingerprints have visible impact on intrafield
CDs at the wafer level and should be considered as another contributor to the reticle part of EUV CDU budget.
We observed also MEEF-through-field fingerprints in the studied EUV cases. Variations of MEEF may also play a role
for the total intrafield CDU and may be taken into account for EUV Lithography. We characterized MEEF-through-field
for the reviewed features, the results to be discussed in our paper, but further analysis of this phenomenon is required.
This comprehensive approach to characterization of the mask part of EUV CDU characterization delivers an accurate
and integral CDU Budget Breakdown per product/process and Litho tool.
The better understanding of the entire CDU budget for advanced EUVL nodes achieved by Samsung and ASML helps to
extend the limits of Moore's Law and to deliver successful implementation of smaller, faster and smarter chips in
semiconductor industry.
65-55nm Logic-Devices require high performance of not only the resolution, of but also the overlay accuracy
(Mean+3sigmas < 20-30nm). Thus, here, overlay performance of several layers in our advanced devices is investigated
with using Immersion-exposure-tool. We used the new alignment system called SMASHTM which has the phase grating
alignment sensor newly installed in our immersion-exposure-tool (XT1400Ei). SMASH supports flexible mark design in
terms of size and pitch of the grating so that it can comply for our design requirement. SMASH has much smaller
alignment beam size of ~ 40um for it.
New mark design for our 65-55nm process will be investigated so as to obtain higher alignment accuracy than that of
current marks. The alignment performance becomes more accurate proportionally to data density of the mark and it
depends on the diffraction angle and efficiency from the mark. Thus, to obtain acceptable alignment accuracy with
smaller mark, it should be designed such as diffraction efficiency is maximized within the required boundary condition
in the pitch [diffraction angle] and segmentation of the mark.
In this paper, several new marks are designed and evaluated. The evaluation shows that comparable performance could
be obtained in the new design mark as in ASML's conventional marks. Finally, we select one from the new smaller
marks and apply it to our 65-55nm process, especially, to the five process modules (Gate-to-Active, Contact-to-Gate,
Metal1-to-Contact, Via1-to-Metal1, Metal2-to-Via1), and performance within 20nm (Mean+3sigmas) are typically
obtained. The overlay accuracy needed for our 65-55nm Logic-Devices is successfully achieved with
immersion-exposure-tool.
SMASH* (SMart Alignment Sensor Hybrid): the name of alignment system using with phase grating alignment sensor.
Semiconductor industry has an increasing demand for improvement of the total lithographic overlay performance. To
improve the level of on-product overlay control the number of alignment measurements increases. Since more mask
levels will be integrated, more alignment marks need to be printed when using direct-alignment (also called layer-to-layer
alignment). Accordingly, the alignment mark size needs to become smaller, to fit all marks into the scribelane. For
an in-direct alignment scheme, e.g. a scheme that aligns to another layer than the layer to which overlay is being
measured, the number of needed alignment marks can be reduced.
Simultaneously there is a requirement to reduce the size of alignment mark sub-segmentations without compromising the
alignment and overlay performance. Smaller features within alignment marks can prevent processing issues like erosion,
dishing and contamination. However, when the sub-segmentation size within an alignment mark becomes comparable to
the critical dimension, and thus smaller than the alignment-illuminating wavelength, polarization effects might start to
occur. Polarization effects are a challenge for optical alignment systems to maintain mark detectability. Nevertheless,
this paper shows how to actually utilize those effects in order to obtain enhanced alignment and overlay performance to
support future technology nodes.
Finally, another challenge to be met for new semiconductor product technologies is the ability to align through semi-opaque
materials, like for instance new hard-mask materials. Enhancement of alignment signal strength can be reached
by adapting to new alignment marks that generate a higher alignment signal. This paper provides a description of an
integral alignment solution that meets with these emerging customer application requirements. Complying with these
requirements will significantly enhance the flexibility in production strategies while maintaining or improving the
alignment and overlay performance. This paper describes the methodology for optimization of the alignment strategy.
In this paper, alignment and overlay results on processed short-flow wafers are presented. The impact of various mark designs on overlay performance was investigated, using a newly developed phase grating wafer alignment sensor concept. This concept is especially suited to support mark design flexibility, as well as to further improve upon the performance of the alignment sensors currently known. The unique sensor concept allows for alignment to a large variety of marks layouts, thereby complying with customer specific alignment mark design requirements.
Here, we present alignment performance results on Toshiba's new marks. For this purpose, the new alignment sensor was integrated in an ASML proto-type tool. Alignment performance on ASML default mark types was demonstrated to guarantee backward compatibility with known alignment sensors. Alignment repeatability numbers of <3 nm (3sigma) were obtained for the different mark designs investigated. These numbers were measured on marks in resist as well as on processed short flow lots. Short term overlay capability of <6 nm (mean+3sigma) was demonstrated on Toshiba mark types, and on ASML mark types. Long term overlay values were demonstrated to be below 8 nm (mean + 3sigma) for both mark designs.
The alignment and overlay capability, on processed wafers, was demonstrated for two process modules: Gate-to-Active (GC-AA) and Metal1-to-Contact (M1-CS). Typical overlay values measured were 20 to 30 nm, for the GC-AA and the M1-CS process module respectively. Further improvements with respect to alignment performance and overlay capability are anticipated through the use of advanced applications, and by further optimization of alignment mark design. This will be verified in future joint Toshiba/ASML experiments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.