Graphene-HgCdTe heterostructure based mid wave IR (MWIR) detectors are being designed for NASA Earth Science applications. Combining Density Functional Theory (DFT) based calculations of the bandstructure with carrier generation and transport model of this detector, we study the essential physics of this novel detector design and project its performance. Combining the best of both these materials can yield high performance and superior detection capabilities.
Some III-V digital alloy avalanche photodiodes demonstrate very low excess noise making them suitable for single photon detection applications. This behavior is attributed to the presence of minigaps in the valence band and high hole effective mass which reduce hole impact ionization. In this work, we present a physics based SPICE compatible compact model for these low noise avalanche photodiodes built from parameters extracted from Environment-Dependent Tight Binding model, that is calibrated to ab-initio Density Functional Theory, and Monte Carlo methods. Using this approach, we can accurately capture the physical characteristics of APDs in integrated photonics circuit simulation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.