A surgical simulator with elaborate artificial eyeball models has been developed for ophthalmic surgeries, in which sophisticated skills are required. To create the elaborate eyeball models with microstructures included in an eyeball, a database of eyeball models should be compiled by segmenting eye structures based on high-resolution medical images. Therefore, this paper presents an automated segmentation of eye structures from micro-CT images by using Fully Convolutional Networks (FCNs). In particular, we aim to construct a method for accurately segmenting eye structures from sparse annotation data. This method performs end-to-end segmentation of eye structures, including a workflow from training the FCN based on sparse annotation to obtaining the segmentation of the entire eyeball. We use the FCN trained on the slices sparsely annotated in a micro-CT volume to segment the remaining slices in the same volume. To achieve accurate segmentation from less annotated images, the multi-class segmentation is performed by using the network trained on the preprocessed and augmented micro-CT images; in the preprocessing, we apply filters for removing ring artifacts and random noises to the images, while in the data augmentation process, rotation and elastic deformation operations are performed on the sparsely-annotated training data. From the results of experiments for evaluating segmentation performances based on sparse annotation, we found that the FCN trained with data augmentation could achieve high segmentation accuracy of more than 90% even from a sparse training subset of only 2.5% of all slices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.