This paper extends the ground-level visual attributes to high resolution remote sensing imagery to demonstrate the useful-ness of visual attributes for remote sensing tasks such as image classification. Visual attributes have been introduced as the semantic properties that transcend the categories. We train predictors from the largest ground-level attributes datasets, SUN, for 102 visual attributes, which is well defined in SUN. We first form an attribute-based representation for the remote sensing imagery with the output of trained attribute predictors. We then evaluate the classification performances of the attribute-based representation against traditional features. Extensive experiments on the ground-level baseline dataset scene 15 and remote sensing dataset UCMLU shows that ground-level visual attributes outperform the traditional low-level features in the classification problem, and the combination of ground-level visual attribute and low-level features obtains best classification rate. Moreover, we demonstrate that attribute-based representation is much more semantically powerful than the low-level features.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.