Interest in variable-focus lenses is growing due to their dynamic optical power control and reduced spatial demands for focusing and/or zooming functions. Most variable-focus lenses are limited to small apertures (< 10mm), limiting their application scenarios. In this work, we designed and fabricated a 42mm large-aperture variable-focus lens based on a liquid-membrane-liquid (LML) structure. This design surpasses the typical limitations of small aperture sizes in variable-focus lenses. Experiments show that the prototype achieves consistent optical power actuation range in [−3D, +3D], high repeatability during the actuation process, and 82.1622% transmittance using a ~630nm laser beam. After constructing an imaging system incorporating the proposed prototype, the imaging tests yield average modulation transfer function (MTF) values of 0.7904 at 17.204lp/mm spacial frequency and 0.5439 at 34.409lp/mm in the region where no obvious distortion occurs. The prototype demonstrates potential applications in fields requiring large aperture and high-quality imaging capabilities, such as wearable devices and machine vision.
Head-mounted displays (HMDs) require precise measurement of virtual image distance for user comfort, but this is challenging due to dynamic variations. This paper addresses the difficulty by proposing a prototype using a variable-focus liquid lens and a calculation model for virtual image distance. We developed an experimental platform to validate the method and introduced an optimization algorithm to find the optimal focal length for maximum sharpness. Results showed a distance error of about 5 cm, confirming that our method accurately measures virtual image distance in HMDs, with potential applications in virtual and augmented reality.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.