We designed and fabricated a 1310 nm/1550 nm demultiplexer with a directional coupler for optical fiber communication systems with much increased transmission capacity. We also propose novel design methods to reduce its length and improve its performance. First, the device length was reduced by using the generalized extinction ratio curve, which was normalized by the normalized frequency (v). Second, the lateral shift and the curved waveguide for the optimization of input region were adopted to improve the extinction ratio, and the shift is to outward of a directional coupler. Lateral shift reduces discrepancy between the two transfer coefficients, Cve and Cvo, and curved input waveguide controls mode profile asymmetrically to minimize the effect of these without serious decrease in transfer efficiency. For a given interaction length of 1.948 mm, the 1310 nm and 1550 nm wavelength light transfer to the cross state and the bar state, respectively. Above results are used to fabricate of a demultiplexer operating at 1310 nm and 1550 nm with the extinction ratios of -29.64 dB at 1310 nm and -20.32 dB at 1550 nm, respectively. The demultiplexer device was fabricated with polymer materials on a fused glass substrate. The core of the device was formed by micro-transfer molding technique with the polydimethylsiloxane (PDMS) mold. We found that these novel devices can be formed in optical fiber communication systems.
A vertically interconnected structure is a key feature of a photonic integrated circuit application, like an optical printed circuit board. Conventional vertical interconnecting structures have a 45 degree mirror, with or without metal coating to enhance its reflectance. We have designed a curved-shape semi-spherical type vertical interconnecting structure to enhance vertical interconnecting efficiency, and also developed simple fabrication procedure to realize it.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.