Ischemic stroke infarct tissues are not salvageable. The infarct volume calculated from a segmented infarct region is an important parameter required to decide on the optimal treatment work ow. Deep learning continues to demonstrate the significance of end-to-end training with limited use of apriori knowledge (such as domain-aware feature engineering) in learning medical imaging tasks. Incorporating prior domain-specific knowledge introduces better inductive bias in learning tasks with low data availability, thereby improving performance. Several techniques have been used for segmentation of infarct region ranging from traditional approaches like region growing to deep learning approaches with limited use of domain-specific knowledge. This paper incorporates domain-specific knowledge into deep neural networks to restrict the region of interest thereby improving the performance of infarct segmentation. Incorporating domain-specific knowledge improve the performance by 17%.
A potential drawback of computer-aided diagnosis (CAD) systems is that they tend to capture the noise characteristics along with signal variations due to a limited number of sources used in training. This leads to a decrease in performance on data from different sources. The variations in scanner settings, device manufacturers and sites pose a significant challenge to the learning capabilities of the CAD systems like chest radiographs, also called Chest X-rays (CXR). In the proposed work, we investigate if preprocessing transformations like global normalization along with local enhancements are good to tackle the variability of data from multiple sources on a supervised CXR classification system. We also propose a detail enhancement filter to enhance both finer structures and opacities in CXRs. With the proposed preprocessing improvement, experiments were performed on 13,000 images across 3 public and one private data source using Dense Convolutional Network (DenseNet). The sensitivity at equal error rate (mean ± sd) improved from 0.888 ± 0.043 to 0.931 ± 0.030 by applying a combination of global histogram equalization with the proposed detail enhancement filter when compared to the raw images. We conclude that the proposed transformations are effective in improving the learning of CXRs from different data sources.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.