Plug and play fiber coupling at the wafer-scale is highly relevant to interconnect photonic integrated circuits (PICs), switches and multiplexer for short to long range communication, as well as chiplets in new chip design with optical interconnects. A new solution is presented being compact, low-loss, and in plane, adaptable to a wide range of fibers. It is based on beam-shaping reflecting elements monolithically fabricated with integrated comp like fiber alignment structures. Successful assembly of a 12-fiber ribbon is demonstrated with excess losses as low as 0.35 dB. The processes and methods are highly homogeneous and scalable.
Guest Editors Jeroen Missinne, Yanlu Li, Stefan Mohrdiek, and Padraic Morrissey introduce the Special Section on Packaging Challenges of Photonic Integrated Circuits.
Photonics integration continues to be a main driver for innovation in multiple aspects, including wafer-scale integration, new materials, sub-micron alignment of components and protection from harsh environment. We show cost-effective fabrication technologies of micro-optical components by UV wafer-scale replication into chemically stable polymers. Furthermore, for simplified fiber coupling and packaging, a novel 90° optical interconnect is presented, integrated with self-alignment structures. Replicated, space compliant microlenses on packaged CMOS imagers show improved light sensitivity by a factor 1.8. A laser based, low stress bonding process is explored to generate wafer-scale hermetic enclosures for harsh environment applications ranging from space to implants.
This paper summarizes the results of an EU project called ACTION: ACTive Implant for Optoacoustic Natural sound
enhancement. The project is based on a recent discovery that relatively low levels of pulsed infrared laser light are capable
of triggering activity in hair cells of the partially hearing (hearing impaired) cochlea and vestibule. The aim here is the
development of a self-contained, smart, highly miniaturized system to provide optoacoustic stimuli directly from an array
of miniature light sources in the cochlea. Optoacoustic compound action potentials (oaCAP) are generated by the light
source fully inserted into the unmodified cochlea. Previously, the same could only be achieved with external light sources
connected to a fiber optic light guide. This feat is achieved by integrating custom made VCSEL arrays at a wavelength of
about 1550 nm onto small flexible substrates. The laser light is collimated by a specially designed silicon-based ultra-thin
lens (165 um thick) to get the energy density required for the generation of oaCAP signals. A dramatic miniaturization of
the packaging technology is also required. A long term biocompatible and hermetic sapphire housing with a size of less
than a 1 cubic millimeter and miniature Pt/PtIr feedthroughs is developed, using a low temperature laser assisted process
for sealing. A biofouling thin film protection layer is developed to avoid fibrinogen and cell growth on the system.
This work presents some aspects of development of ultra-high power single-mode pump modules at λ= 980 nm for erbium-doped fiber amplifiers. We report here on the results of numerical simulations and experimental data of modifications to the laser waveguide structure with a focus on improving the fiber coupling efficiency. The so-called integrated fiber wedge lens was used as a coupling element in the present investigation. Our simulations showed that between the two most widely used laser waveguide types: large optical cavity (LOC) and separate confinement (SCH or GRICC) heterostructures the difference in coupling efficiency can be as high as ten absolute percent We achieved an experimental coupling efficiency of 93 percent for LOC-like lasers structure. The SCH-based lasers showed maximum coupling efficiency of 83 percent. However, in spite of superior coupling efficiency, use of LOC-based lasers in pump modules does not bring any benefits because of subpar electro-optical performance. To improve the situation we had to find a reasonable compromise between LOC and SCH structures. Lasers resulting from this approach gave a coupling efficiency around 90 percent. The laser diodes based on the optimized structure achieve more than 3 W of output power and more than 2 W of kink-free power in CW regime at room temperature. They also demonstrate differential quantum efficiency above 85% and laser power conversion efficiency above 60 percent at use conditions. Thanks to the combination of all these factors pump modules built on these lasers produce 1W of wavelength-stabilized power at an operating current below 1.3 A. Maximum kink-free, wavelength-stabilized output from the pump module reached 1.8 W at room temperature.
We report on development of novel curved waveguide (CWG) laser devices, where the emission wavelength centered at
~976 nm is stabilized to a 20 dB bandwidth of less than 100 picometer by using fiber Bragg gratings (FBG). Radiation
from the curved waveguide laser is coupled using an anamorphic fiber lens into a single mode polarization maintaining
fiber containing the FBG, the latter acting as a front reflector. The high power gain chip is based on Oclaro's
InGaAs/AlGaAs quantum well laser. Use of the curved waveguide geometry allows to eliminate residual reflections in
the optical path of the cavity, which is formed by the rear chip facet and the FBG. It is well known that additional
reflections lead to significant deterioration of the spectral and power stability. The devices, assembled in telecom type
housings, provide up to 1 W of low-noise and kink-free CW power. In addition pulse operation in nanosecond range is
also investigated. The spectral stabilization time to the wavelength of the FBG is limited by the external cavity roundtrip
of ~2 ns. A side mode suppression ratio of about 40 dB and higher is achieved for pulsed and CW operation. Results are
also presented for a device at 1064 nm. Numerous applications can be envisioned for these devices. For instance devices
with high power and ultranarrow spectral bandwidth allow greater flexibility in the choice of parameters for frequency
conversion applications. In pulsed mode the device can be used in the special sensing applications where spectral
stability is crucial.
Single-transverse-mode semiconductor laser diodes with broad emission spectrum in pulsed or CW regime are attractive
as seed sources in fiber laser systems. Stimulated Brillouin scattering can be a limiting factor in such systems, causing
damaging high power pulses to reverse propagate in the fibre. The effect can be significantly mitigated by broadening
the linewidth of the seed laser. Here we report on such a seed source capable of operating in either CW or pulsed mode
with a center wavelength at around 1060 nm and spectral full width at half maximum of greater than 10 nm. The new
source is based on well-established ridge waveguide pump laser technology, modified for operation in a
superluminescent regime. A coupling efficiency of ~80 % into a single mode fiber is achieved. Our time resolved
spectral studies show that the device is demonstrating fast modulation rate and very high peak optical power up to 1 W
while maintaining a broad emission spectrum greater than 10 nm.
We report on reliable single-mode laser modules at 1060 nm used in pulsed operation for efficient seeding of fiber amplifiers. The modules incorporate InGaAlAs single quantum well diodes with a design inherited from telecom qualified devices. Pulse parameters can be widely varied with laser intrinsic modulation capability in GHz range. 2.5 W peak power is exhibited in a single-mode fiber at a current of 5 A with 200 ns pulses. Reliability is proven by lifetest in pulsed operation up to 3.5 A. Wavelength stabilization with fiber Bragg gratings is obtained over a wide range of operating conditions.
Coupling to the fiber Bragg grating (FBG) is a well-established technique of emission wavelength stabilization in single mode pump lasers used for instance in Er-doped fiber amplifiers (see e.g. Ref. 1). The output power of these devices usually does not exceed 1 W due to limited heat transfer from narrow active stripe of the single mode laser diode. To satisfy increasing demand for wavelength-stabilized pump lasers with higher output power we attempted to extend FBG stabilization scheme to high power multimode broad area lasers. This scheme brings usual advantages of FBG stabilization such as environmental wavelength stability, compactness and low cost. Development work has been carried out using our reliable high power pump laser with output aperture of ~ 50 - 100 μm. The emission wavelength of the free running laser was around 960 nm at room temperature. The fiber gratings with reflection maximum at about 975 nm were written in a commercially available multimode fiber. In initial experiments the laser was coupled with discrete optics to the multimode fiber containing FBG. Introduction of the spectrally selective optical feedback locked the laser emission to the Bragg wavelength. The laser emission remained locked to this wavelength up to a maximum drive current of 8 A within a heat sink temperature range of 40°C in this experiment. The overall spectral width of stabilized laser emission facilitates effective and stable pumping into absorption lines as narrow as 5 nm FWHM. Similar results were obtained on the Bookham commercial pump modules with FBG in the output fiber. The modules emitted up 4 W of wavelength-stabilized power from the output fiber with 50 μm core diameter.
A new generation 980 nm pump laser module with a fiber output power more than 750 mW is
presented. The module uses our generation-08 (G08) pump laser chip, which is designed for high
output power and high reliability. The pump laser is stabilized by a fiber Bragg grating (FBG). A
special thermo-electric cooler (TEC) is built into the package in order to enable operation of the device
at high laser output powers.
The performance of high-power pump-laser modules is strongly influenced by their thermal properties. In this paper we discuss the optimization of the device performance with respect to thermal properties, output power, wavelength stability, and device reliability using the example of our newest pump-laser generation that has been developed and qualified to support the high-end market of erbium-doped fiber amplifiers. A comparison of device properties obtained from modeling and measurements is presented at each design step. We report on the performance of fiber Bragg grating-stabilized telecom-grade modules yielding 600 mW fiber-coupled light output power.
We report on the development of a new cost-effective, small form-factor laser source at a wavelength of 980 nm. The laser module is based on proven technology commonly used for pump laser modules deployed in fiber amplifiers of telecommunication networks. The package uses a state-of-the-art 14-pin butterfly housing with a footprint of 30x15 mm2 with a Fabry-Perot AlGaAs-InGaAs pump laser diode mounted inside having an anti-reflection coating on its front facet. The light is coupled into a single-mode polarization-maintaining fiber with a mode-field diameter of 6.6 micrometer. The spectral properties of the source are defined by a fiber Bragg grating (FBG) that provides feedback in a narrow reflection band. The laser back facet and the FBG form a long resonant cavity of 1.7 m length in which laser light with a low coherence length of a few cm is generated. This configuration with the laser being operated in the coherence-collapse regime has the advantage of being robust against variations in the optical path, thus enabling stable and mode-hop free emission. The laser module has the following properties: a continuous-wave fiber output power exceeding 800 mW, a spectral bandwidth of less than 50 pm, a root-mean square power variation of less than 0.2 % from DC to 2 MHz over the entire power operating range, and a polarization extinction ratio of more than 20 dB. This is a compact, low noise, high power source for frequency conversion with nonlinear optical materials, such as blue light generation.
AlGaAs/InGaAs based high power pump laser diodes with wavelength of around 980 nm are key products within erbium doped fiber amplifiers (EDFA) for today's long haul and metro-communication networks, whereas InGaAsP/InP based laser diodes with 14xx nm emission wavelength are relevant for advanced, but not yet widely-used Raman amplifiers. Due to the changing industrial environment cost reduction becomes a crucial factor in the development of new, pump modules. Therefore, pump laser chips were aggressively optimized in terms of power conversion and thermal stability, which allows operation without active cooling at temperatures exceeding 70°C. In addition our submarine-reliable single mode technology was extended to high power multi-mode laser diodes. These light sources can be used in the field of optical amplifiers as well as for medical, printing and industrial applications. Improvements of pump laser diodes in terms of power conversion efficiency, fiber Bragg grating (FBG) locking performance of single mode devices, noise reduction and reliability will be presented.
For high data rate (greater than 1 Gbps) Optical Inter- Satellite Link (OISL), a compact laser transmitter with high power and good efficiency is required. A trade-off analysis between the technologies such as the mature 840 nm laser diodes, 1064 nm diode-pumped solid state laser and the more recent 1550 nm Erbium Doped Fiber Amplifier (EDFA) is used to find the optical solution. The Si-APDs are preferred for their large detector areas and good noise figures which reduce the tracking requirements and simplify optical design of the receiver. Because of significant amount of power needed to close the link distance up to 7000 km (LEO-LEO), use of 840 nm diodes is limited. In this paper, we present an alternative system based on a system concept denoted as the SLYB (Semiconductor Laser Ytterbium Booster). The SLYB uses a polarization maintaining double-clad ytterbium fiber as a power amplifier. The device houses two semiconductor diodes that are designed to meet telecom reliability: a broad-area 917 nm pump diode and a directly modulated FP laser for signal generation. The output signal is in a linearly polarized state with an extinction ratio of 20 dB. The complete module (15 X 12 X 4.3 cm3) weighs less than 0.9 kg and delivers up to 27 dBm average output power at 985 nm. Designed primarily for direct detection using Si APDs, the transmitter offers a modulation data rate of at least 1.5 Gb/s with a modulation extinction ratio better than 13 dB. Total power consumption is expected to be lower than 8 W by using an uncooled pump laser. Preliminary radiation testing of the fiber indicates output power penalty of 1.5 dB at the end of 10 years in operation. We are presently investigating the fabrication of an improved radiation-hardened Yb-fiber for the final prototype to reduce this penalty. For higher data rate the design can be extended to a Wavelength Division Multiplexing (WDM) scheme adding multiple channels.
State-of-the-art pump lasers for fiber amplifiers in optical telecommunication systems can deliver up to 250 mW optical power in single mode emission. Power approaching 500 mW is seen as the upper limit for single mode lasers without sacrificing reliability. For yet higher power, broad area laser diodes coupled into the cladding of ytterbium-erbium doped fibers have a great potential to achieve more gain. Here, Diode lasers with a ridge width of 30 micrometer mounted junction-side-up using a hard-tin solder are presented as an alternative over EDFA pumping by single-mode lasers. Reliable broad area lasers are obtained by adopting standard narrow-stripe single-mode laser technology with proven 110 FIT at 150 mW and 25 degrees Celsius varying only the ridge width. Reliability and packaging problems commonly associated with p- side down mounting are avoided. Due to the high power conversion efficiency greater than 55% of the laser chip, a cw maximum output power as high as 1.1 W can be obtained. Submicron fiber alignment tolerances are no longer required, as compared to single mode lasers. Due to low heat dissipation these 30 micrometer stripe lasers can be operated in standard butterfly packages and high coupling efficiencies are achieved above 80% into standard 50 micrometer multimode fibers. YEDFA's with 23 dBm output power using these lasers have been demonstrated.
Aluminum-free material has proved to be very promising for lasers of 800 - 1000 nm wavelength range. Up to now the most widely used growth method of GaInAsP quaternary alloys was Metal-Organic Chemical Vapor Deposition (MOCVD) technique. Gas Source Molecular Beam Epitaxy (GSMBE) is also able to produce high-quality Al-free material for optoelectronics. This paper aims to present the direct comparison of laser material quality grown by MOCVD and GSMBE. The easiness of composition control, flexibility of the deposition process and composition uniformity in GSMBE-grown material allowed us to further improve the performance of laser diodes operating at 800 nm wavelength range.
Injection-locked directly current modulated semiconductor laser transmitters are theoretically investigated with respect to transmission performance. By large signal simulation of laser, standard single-mode fiber propagation and direct detection optically pre-amplified PIN receiver, transmission distances of 80-120 km at 10 Gb/s and 40-60 km at 15 Gb/s have been evaluated with a bit-error-rate < 10-9 with reasonable power penalty. Exploiting fiber nonlinearities with higher power launched into the fiber is demonstrated to increase the transmission distance by about 40%. Additionally the dynamics of the residual chirp of the laser is shown to act favorably on transmission performance. Guidelines for operation conditions of injection-locked lasers depending on detuning between laser and slave laser and injected power are given. Gain switching including optical feedback and the gain- levering effect have been investigated with respect to pulse production for optical time domain multiplexing. A new method for short pulse generation is presented. It is based on single frequency CW light injection into an unmodulated single mode laser under nonstable locking- conditions. Repetition frequencies larger than 150 GHz can be achieved. By soliton generation in a dispersion shifted fiber pulse widths of less than 3 ps FWHM with a squared hyperbolic cosecans shape can be generated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.