Highly sensitive trace-gas sensors are required in a large range of applications, such as biological, environmental, industrial, and fundamental physics. Photoacoustic spectroscopy has the advantages of compactness and robustness and is characterized by a high degree of flexibility in its configuration, in particular in the selection of the laser source and the transducer. Here we report the experimental characterization of new silicon-based Micro electro-mechanical systems (MEMS) structures to be applied as acoustic-to-voltage transducers in a photo-acoustic-based sensor. In our setup, a 4.5 μm continuous wave quantum cascade laser is used to address strong N2O roto-vibrational transition, and the detection of MEMS oscillations is performed via a balanced interferometric readout.
In the race toward increasingly high-performance trace-molecule sensors, one of the most significant steps forward in the last decade for photoacoustic sensors was their combination with high-finesse optical cavities. Validated with different configurations, this technique demonstrated enhanced sensitivities below the part-per-trillion level (ppt) and record dynamic ranges. Here we present our advanced cantilever-based photoacoustic setup, based on a custom-made silicon cantilever embedded in a doubly-resonant configuration. The combination of a high-quality-factor acoustic resonator and a high-finesse optical cavity allows a final sensitivity enhancement by several orders of magnitude. The sensor was tested on strong N2O transitions around 4.5 μm wavelength with a continuous-wave quantum cascade laser.
We report on a sensor for methane (C1) and ethane (C2) detection employing a quartz tuning fork as a photodetector for tunable diode laser spectroscopy (TDLAS). In this configuration, the QTF is immersed in the gas mixture under investigation within a vacuum-tight cell. Concentrations of methane and ethane in nitrogen-based mixtures ranged from traces up to percent. An interband cascade laser emitting at 3.345 μm was used as light source. Natural gas-like mixtures were generated in 1:10 nitrogen dilution, and gas mixtures composition was retrieved with an accuracy >98%. Decreasing the target gases concentration, minimum detection limits of 770 ppb and 75 ppb for C1 and C2, respectively, were measured at 10 s integration time.
We report on the detection of the isotopologues 12CH4 and 13CH4 by employing a quartz-enhanced photoacoustic spectroscopy (QEPAS)-based sensor. By properly selecting the exciting light source and the working conditions, two absorption lines, having a negligible cross-section ratio temperature coefficient of -6.7‰/°C and a cross section ratio of ~ 0.06 for a natural abundance of each isotope, can be targeted. The QEPAS signal of the two isotopologues was acquired for mixtures in nitrogen of methane in natural abundance in a wide range of concentrations (0.02%-20%) showing a non-linear trend with high concentrations and a constant ratio comparable with the cross-section.
We report on a highly sensitive and selective optical sensor for detection of carbon monoxide (CO) in a sulfur hexafluoride (SF6) gas matrix by using quartz-enhanced photoacoustic spectroscopy (QEPAS) technique. The sensor uses a mid-infrared quantum cascade laser with central wavelength at 4.61 μm as light source and a spectrophone consisting of a novel 8 kHz T-shaped quartz tuning fork with grooved prongs coupled with a pair of resonator tubes for photoacoustic detection. A minimum detection limit of 10 ppb at 10 s of signal integration time was achieved.
The main limitations of tunable diode laser absorption spectroscopy (TDLAS) sensors are represented by the high cost, limited detection bandwidth and low adaptability of photodetectors to work in harsh environments. In this work we present an extensive study on quartz tuning forks (QTFs) used as photodetectors, exploiting the opto-thermo-elastic energy conversion arising from the laser radiation-QTF interaction. The role of the strain field, accumulation time and working pressure of the quartz resonator in this Light-Induced Thermo-Elastic Spectroscopy (LITES) approach was then evaluated for a whole set of tuning forks. Once identified the most performant resonator, this QTF was implemented in a TDLAS setup and it was combined with laser diodes, interband- and quantum-cascade laser sources emitting from 1 μm to 10.5 μm and targeting different gas spacies. The detection limits achieved for the QTF were comparable or even lower down to one order of magnitude with respect to market-available photodetectors.
We report on a comparison between the piezoelectric and interferometric readouts of vibrations in quartz tuning forks (QTFs) when employed as sound wave transducers in quartz-enhanced photoacoustic trace gas sensors. We demonstrate the possibility to properly design the QTF geometry to enhance interferometric readout signal with respect to the piezoelectric one and vice versa. When resonator tubes are acoustically coupled with the QTFs, signal-to-noise ratio enhancements are observed for both readout approaches. These results open the way to the implementation of optical readout of QTF vibrations in applications where external electromagnetic field could distort the piezoelectric signal.
In this work, we report on the measurement of methane (CH4) effective non-radiative relaxation rate in a mixture containing 1% of CH4 and 0.15% of water vapor in nitrogen, by using a set of custom quartz tuning forks (QTFs). The dependence of quartz-enhanced photoacoustic spectroscopy (QEPAS) peak signal and QTF quality factor as a function of operating pressure allowed the estimation of the radiation-to-sound conversion efficiency and, consequently, the calculation of the effective relaxation rate of the investigated gas mixture. We measured an effective relaxation rate of 3.2 ms·Torr, in good agreement with values reported in literature.
We report on the performance of new quartz tuning fork (QTF) designs optimized for quartz-enhanced photoacoustic spectroscopy (QEPAS). We investigated the impact on resonance properties of prong geometries differing from the standard rectangular one. We proposed a QTF with T-shaped prongs and a QTF with prongs having rectangular grooves carved on the surface. QTFs were implemented in a QEPAS sensor and performances were compared in terms of signalto-noise ratio (SNR). Then, QTFs were acoustically coupled with single- and dual-tube micro-resonator systems. A record x60 SNR enhancement factor with respect to the bare QTF was achieved with QTF having T-shaped prongs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.