This study describes the development and qualification of strain sensors and thermal compensator for monitoring of ITER vacuum vessel. The operating conditions require 20000h at 200°C and gamma radiation doses up-to 10MGy under high vacuum. A sensor concept was designed based on two spot weldable sensing elements: one weldable strain sensor and one weldable temperature compensator. The developed elements were subjected to qualification tests including optical, thermal cycling, thermal aging, mechanical and radiation. The results validated the solution and proved that the elements comply with requested vacuum vessel environment, withstanding 10MGy radiation, ±1000μm/m for 10E+5 cycles at 100°C, 500 cycles from 100°C to 200°C, 100°C for 120000h, 200°C for 20000h and being fully operational after 80h at 250°C.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.