Unmanned systems simultaneously reduce risk and magnify the impact of soldier-operators. For example, in
Afghanistan UAVs routinely provide overwatch to manned units while UGVs support IED identification and
disposal roles. Expanding these roles requires greater autonomy with a coherent unmanned "system of systems"
approach that leverages one platform's strengths against the weakness of another. Specific collaborative
unmanned systems such as shared sensing, communication relay, and distributed computing to achieve greater
autonomy are often presented as possible solutions. By surveying currently deployed systems, this paper shows
that the spectrum of air and ground systems provide an important mixture of range, speed, payload, and endurance
with significant implications on mission structure. Rather than proposing UxV teams collaborating
towards specific autonomous capabilities, this paper proposes that basic physical and environmental constraints
will drive tactics towards a layered, unmanned battlespace that provides force protection and reconnaissance in
depth to a manned core.
The MultiAgent Tactical Sentry (MATS) project addressed a Canadian Forces (CF) requirement to remotely detect NBC threats. This requirement was met by integrating a suite of primary NBC sensors onto a remotely operated vehicular platform. From inception to completion, the project spanned 30 months. End user trials continue with the initial production run systems and consequently, the CF techniques, tactics, and procedures (TTPs) are evolving on a continual basis.
KEYWORDS: Unmanned aerial vehicles, Intelligence systems, Control systems, Sensors, Defense and security, Artificial intelligence, Algorithm development, Robotics, Systems modeling, Decision support systems
The Defence Research and Development Canada's (DRDC has been given strategic direction to pursue research to increase the independence and effectiveness of military vehicles and systems. This has led to the creation of the Autonomous Intelligent Systems (AIS) prgram and is notionally divide into air, land and marine vehicle systems as well as command, control and decision support systems. This paper presents an overarching description of AIS research issues, challenges and directions as well as a nominal path that vehicle intelligence will take. The AIS program requires a very close coordination between research and implementation on real vehicles. This paper briefly discusses the symbiotic relationship between intelligence algorithms and implementation mechanisms. Also presented are representative work from two vehicle specific research program programs. Work from the Autonomous Air Systems program discusses the development of effective cooperate control for multiple air vehicle. The Autonomous Land Systems program discusses its developments in platform and ground vehicle intelligence.
The Defence Research and Development Canada's (DRDC) Autonomous Intelligent System's program conducts research to increase the independence and effectiveness of military vehicles and systems. DRDC-Suffield's Autonomous Land Systems (ALS) is creating new concept vehicles and autonomous control systems for use in outdoor areas, urban streets, urban interiors and urban subspaces. This paper will first give an overview of the ALS program and then give a specific description of the work being done for mobility in urban subspaces. Discussed will be the Theseus: Thethered Distributed Robotics (TDR) system, which will not only manage an unavoidable tether but exploit it for mobility and navigation. Also discussed will be the prototype robot called the Hedgehog, which uses conformal 3D mobility in ducts, sewer pipes, collapsed rubble voids and chimneys.
While land vehicles in open terrains is currently the primary military operation, it is expected that an increasing number of conflicts will occur in urban setting. Urban robots must operate under mobility, communication, perception and control conditions far more demanding than their open terrain counterparts. The Defense Research Establishment Suffield (DRES) is being tasked to develop robots, unmanned vehicles and supports system to aid the Canadian Forces in urban operations. In preparation for this role DRES personnel were invited to participate in operation Urban Ram, a large urban war game held on the grounds of CFB Griesbach in Edmonton. This paper presents the lessons learned at Urban Ram as to what roles robots could fulfill and the challenges of urban environments that must be overcome. Also presented will be robotic concepts inspired by Urban Ram, specifically discussed will be High Utility Robotics (HUR), which combines geometric shape shifting with function morphing to provide the general purpose, high mobility and broad application robots required for urban environments.
A hybrid platform for an Unmanned Ground Vehicle (UGV), one with legs and wheels, was initially considered to yield a design that possessed a high degree of intrinsic mobility. Integrating a high level of mobility reduces the UGV's perception and computational requirements for successful semi-autonomous or autonomous terrain negotiation. An investigation into the dynamic capabilities of the hybrid design revealed a large amount of otherwise impossible behaviors. The widened scope of maneuvers enabled the simulated robot to negotiate higher obstacles, clear larger ditches and generally improved its rough terrain mobility. A scalability study was also undertaken to predict dynamic potential of various platform sizes and to aid in the selection of design specifications such as motor torque-speed curves. The hybrid design of the platform (legs with active wheels) proved invaluable in achieving these dynamic behaviors and revealed that the leg-wheel design was as fundamental to dynamic capabilities, as it was to intrinsic mobility.
The ability of an Unmanned Ground Vehicle (UGV) to successfully move about in its environment is enabled by the synergistic combination of perception, control and platform (mobility and utility). Vast effort is being expended on the former technologies but little demonstrable evidence has been produced to indicate that the latter (mobility/utility) has been considered as an integral part of the UGV systems level capability; a concept commonly referred to as intrinsic mobility. While past work described the rationale for hybrid locomotion, this paper aims to demonstrate that integrating intrinsic mobility into a UGV systems mobility element or 'vehicle' will be a key contributor to the magnitude of autonomy that the system can achieve. This paper serves to provide compelling evidence that 1) intrinsic mobility improvements provided by hybrid locomotion configurations offer the best generic mobility, that 2) strict attention must be placed on the optimization of both utility (inherent vehicle capabilities) and mobility and that 3) the establishment of measures of performance for unmanned vehicle mobility is an unmet and latent need.
An important but oft overlooked aspect of any robotic system is the synergistic benefit of designing the chassis to have high intrinsic mobility which complements rather than limits, its system capabilities. This novel concept continues to be investigated by the Defence Research Establishment Suffield (DRES) with the Articulated Navigation Testbed (ANT) Unmanned Ground Vehicle (UGV). The ANT demonstrates high mobility through the combination of articulated steering and a hybrid locomotion scheme which utilizes individually powered wheels on the edge of rigid legs; legs which are capable of approximately 450 degrees of rotation. The configuration can be minimally configured as a 4x4 and modularly expanded to 6x6, 8x8, and so on. This enhanced mobility configuration permits pose control and novel maneuvers such as stepping, bridging, crawling, etc. Resultant mobility improvements, particularly in unstructured and off-road environments, will reduce the resolution with which the UGV sensor systems must perceive its surroundings and decreases the computational requirements of the UGV's perception systems1 for successful semi-autonomous or autonomous terrain negotiation. This paper reviews critical vehicle developments leading up to the ANT concept, describes the basis for its configuration and speculates on the impact of the intrinsic mobility concept for UGV effectiveness.
Having demonstrated significant technical and marketplace advantages over other modalities for video immersion, PanosphericTM Imaging (PI) continues to evolve rapidly. This paper reports on progress achieved since AeroSense 97. The first practical field deployment of the technology occurred in June-August 1997 during the NASA-CMU 'Atacama Desert Trek' activity, where the Nomad mobile robot was teleoperated via immersive PanosphericTM imagery from a distance of several thousand kilometers. Research using teleoperated vehicles at DRES has also verified the exceptional utility of the PI technology for achieving high levels of situational awareness, operator confidence, and mission effectiveness. Important performance enhancements have been achieved with the completion of the 4th Generation PI DSP-based array processor system. The system is now able to provide dynamic full video-rate generation of spatial and computational transformations, resulting in a programmable and fully interactive immersive video telepresence. A new multi- CCD camera architecture has been created to exploit the bandwidth of this processor, yielding a well-matched PI system with greatly improved resolution. While the initial commercial application for this technology is expected to be video tele- conferencing, it also appears to have excellent potential for application in the 'Immersive Cockpit' concept. Additional progress is reported in the areas of Long Wave Infrared PI Imaging, Stereo PI concepts, PI based Video-Servoing concepts, PI based Video Navigation concepts, and Foveation concepts (to merge localized high-resolution views with immersive views).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.