KEYWORDS: Etching, Dielectrics, Silicon carbide, Silicon, Reactive ion etching, Scanning electron microscopy, Electron beam lithography, Photoresist materials, Phonons, Atomic force microscopy, 3D printing
Dielectric and semiconductor structures at the nanoscale are increasingly being applied in nanophotonic applications such as enhanced sensing, magnetic field enhancements, and metasurfaces. In contrast to their traditional metal plasmon counterparts -- such as Au and Ag -- dielectric materials benefit from low losses and CMOS compatibility. Here we explore of 3D dielectric structures on the nanometer and micron scales via a new patterning method, which employs both 3D, direct laser write (DLW) and reactive ion etching (RIE). Polymer structures, which are controlled down to the submicron scale both laterally and in height are printed using DLW onto various dielectric materials and are sub sequentially, etched using RIE. By tuning the etch ratio of the dielectric and polymer, the 3D printed pattern is transferred into the dielectric. By patterning a range of different 3D geometries onto Si, SiC, and hBN, we show that this method is applicable to a range of dielectric and semiconductor materials and to a range of different microstructures and nanostructures. Further, we show the possibility of selectively removing the polymer mask without damaging the underlying dielectric material, which enables the possibility of additional fabrication methods, such as for etching thin films.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.