The US National Science Foundation 4m Daniel K. Inouye Solar Telescope (DKIST) on Haleakala, Maui is the largest solar telescope in the world. DKIST’s superb resolution and polarimetric sensitivity will enable astronomers to explore the origins of solar magnetism, the mechanisms of coronal heating and drivers of flares and coronal mass ejections. DKIST operates as a coronagraph at infrared wavelengths, providing crucial measurements of the magnetic field in the corona. During its Operations Commissioning Phase, DKIST has already conducted a significant number of shared-risk observations for community researchers. The complex raw data are calibrated by the DKIST Data Center located in Boulder and distributed to the science community. We’ll present examples of science results and discuss lessons learned. Ongoing instrument development efforts include, an upgrade of the single-conjugate adaptive optics system to a multi-conjugate AO, the implementation of image slicers for the DL-NIRSP instrument and development of infrared detectors the DL- and CRYO-NIRSP instruments.
The Daniel K. Inouye Solar Telescope, with its 4m aperture, is the largest telescope for observations of the Sun, and is currently in its Operations Commissioning Phase. During this phase of the project, the five DKIST first light instruments, the Visible Broadband Imager (VBI), the Visible Spectro-Polarimeter (ViSP), the Diffraction-Limited Near-Infrared Spectro-Polarimeter (DL-NIRSP), the Cryogenic Near-Infrared Spectro-Polarimeter (Cryo-NIRSP) and the Visible Tunable Filter (VTF) are used in selected modes to acquire scientific data. We provide an overview of the DKIST instrumentation system and its inherent flexibility. We further report on lessons learned during commissioning, and present sample data products.
The Diffraction-Limited Near Infrared Spectropolarimeter (DL-NIRSP) is a facility instrument of the U.S. National Science Foundation’s Daniel K. Inouye Solar Telescope (DKIST). DL-NIRSP was originally commissioned with a birefringent fiber optic image slicer for high resolution observations of the solar atmosphere to support contiguous 2D-spatial, spectral, and polarimetric measurements in three channels between 500 and 1800 nm with very high spectral resolution over narrow bandpasses. During commissioning, we found temporal variations of the flat field and other fiber-related issues limited instrument performance. To resolve these various problems, we replaced the existing fiber-based image slicer with the high resolution Machined Image Slicer Integral Field Unit with 36 micrometer wide slicer mirrors (MISI-36). We report on the implementation and optical testing of MISI-36.
The National Science Foundation’s 4m Daniel K. Inouye Solar Telescope (DKIST) on Haleakala, Maui is now the largest solar telescope in the world. DKIST’s superb resolution and polarimetric sensitivity will enable astronomers to unravel many of the mysteries the Sun presents, including the origin of solar magnetism, the mechanisms of coronal heating and drivers of flares and coronal mass ejections. Five instruments, four of which provide highly sensitive measurements of solar magnetic fields, including the illusive magnetic field of the faint solar corona. DKIST operates as a coronagraph at infrared wavelengths where the sky background is low and bright coronal emission lines are available. The high-order, single-conjugate adaptive optics system (AO) provides diffraction limited imaging and the ability to resolve features approximately 20 km on the Sun. A multi-conjugate AO upgrade is in progress. With these unique capabilities DKIST will address basic research aspects of Space Weather and help improve predictive capabilities. DKIST has completed construction and is now in the early phases of operations. Community proposal-based shared-risk observations are conducted by the DKIST operations team.
The Sunrise balloon-borne solar observatory carries a 1 m aperture optical telescope and provides us a unique platform to conduct continuous seeing-free observations at UV-visible-IR wavelengths from an altitude of higher than 35 km. For the next flight planned for 2022, the post-focus instrumentation is upgraded with new spectro- polarimeters for the near UV (SUSI) and the near-IR (SCIP), whereas the imaging spectro-polarimeter Tunable Magnetograph (TuMag) is capable of observing multiple spectral lines within the visible wavelength. A new spectro-polarimeter called the Sunrise Chromospheric Infrared spectroPolarimeter (SCIP) is under development for observing near-IR wavelength ranges of around 770 nm and 850 nm. These wavelength ranges contain many spectral lines sensitive to solar magnetic fields and SCIP will be able to obtain magnetic and velocity structures in the solar atmosphere with a sufficient height resolution by combining spectro-polarimetric data of these lines. Polarimetric measurements are conducted using a rotating waveplate as a modulator and polarizing beam splitters in front of the cameras. The spatial and spectral resolutions are 0.2" and 2 105, respectively, and a polarimetric sensitivity of 0.03 % (1σ) is achieved within a 10 s integration time. To detect minute polarization signals with good precision, we carefully designed the opto-mechanical system, polarization optics and modulation, and onboard data processing.
Polarization measurements of the solar chromospheric lines at high precision are key to present and future solar telescopes for understanding magnetic field structures in the chromosphere. The Sunrise Chromospheric Infrared spectroPolarimeter (SCIP) for Sunrise III is a spectropolarimeter with a polarimetric precision of 0.03 % (1 σ). The key to high-precision polarization measurements using SCIP is a polarization modulation unit that rotates a waveplate continuously at a constant speed. The rotating mechanism is a DC brushless motor originally developed for a future space mission, and its control logic was originally developed for the sounding rocket experiment CLASP. Because of our requirement on a speed of rotation (0.512 s/rotation) that was 10 times faster than that of CLASP, we optimized the control logic for the required faster rotation. Fast polarization modulation is essential for investigating the fine-scale magnetic field structures related to the dynamical chromospheric phenomena. We have verified that the rotation performance can achieve the polarization precision of 0.03 % (1 σ) required by SCIP and such a significant rotation performance is maintained under thermal vacuum conditions by simulating the environment of the Sunrise III balloon flight. The waveplate was designed as a pair of two birefringent plates made of quartz and sapphire to achieve a constant retardation in a wide wavelength range. We have confirmed that the retardation is almost constant in the 770 nm and 850nm wavelength bands of SCIP under the operational temperature conditions.
We are developing a high sensitivity and fast readout near-infrared (NIR) detector and an integral field unit (IFU) for making spectro-polarimetric observations of rapidly varying chromospheric spectrum lines, such as He I 1083 nm and Ca II 854 nm, in the next space-based solar mission SOLAR-C. We made tests of a 1.7 μm cutoff H2RG detector with the SIDECAR ASIC for the application in SOLAR-C. It’s important to verify its perfor- mance in the temperature condition around -100 °C, which is hotter than the typical temperature environment used for a NIR detector. We built a system for testing the detector between -70 °C and -140 °C. We verified linearity, read-out noise, and dark current in both the slow and fast readout modes. We found the detector has to be cooled down lower than -100 °C because of significant increase of the number of hot pixels in the hotter environment. The compact and polarization maintenance IFU was designed using fiber-optic ribbons consisting of rectangular cores which exhibit good polarization maintenance. A Silicone adhesive DC-SE9187L was used to hold the fragile fiber-optic ribbons in a metal housing. Polarization maintenance property was confirmed though polarization calibration as well as temperature control are required to suppress polarization crosstalk and to achieve the polarization accuracy in SOLAR-C.
We developed a new universal spectropolarimeter on the Domeless Solar Telescope at Hida Observatory to realize
precise spectropolarimetric observations in a wide range of wavelength in visible and near infrared. The
system aims to open a new window of plasma diagnostics by using Zeeman effect, Hanle effect, Stark effect, and
impact polarization to measure the external magnetic field, electric field, and anisotropies in atomic excitation
in solar atmosphere. The polarimeter consists of a 60 cm aperture vacuum telescope, a high dispersion vacuum
spectrograph, polarization modulator and analyser composed of a continuously rotating waveplate whose
retardation is constant in 400 - 1100 nm and Wallaston prisms located closely behind the focus of the telescope,
and a fast and high sensitive CCD camera or a infrared camera. The duration for this polarimeter's achieving
photometric accuracy of 10-3 is 30 - 60 s. Instrumental polarization of the telescope is calibrated by using a
remotely controllable turret accommodating linear polarizer attached at the entrance window of the telescope to
induce well known polarized light into the telescope. Thus a Mueller matrix model of the telescope is established
to compensate the instrumental polarization included in observed data within the required accuracy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.