We investigate the relationship between an optical pulse shape and a time lens implemented by means of sinusoidal phase modulation. Based on this investigation, two schemes are proposed to obtain an optical frequency comb (OFC) with exceptionally high flatness and a large number of spectral lines by carving an optical pulse shape to result in a quasilinear chirp via a simple sinusoidal phase modulation technique. The first scheme utilizes an intensity modulator with a single-drive port or with dual-drive ports to carve a narrow pulse. The experimental results show very good spectral profiles with 38 OFC lines at 1.2-dB flatness and 53 lines at 1.5-dB flatness when the intensity modulator is combined with two and three phase modulators for sinusoidal phase modulation, respectively. The second scheme is implemented by replacing the intensity modulator by a dual-parallel Mach–Zehnder modulator (DP-MZM). In this case, we obtain 35 OFC lines at nearly perfect flatness of less than 1 dB and 53 lines at 1.5-dB flatness after combining the DP-MZM with two and three phase modulators, respectively.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.