KEYWORDS: Sensors, Modulation transfer functions, Signal to noise ratio, Astronomical imaging, Staring arrays, Point spread functions, Laser range finders, Astronomy, Fourier transforms, Charge-coupled devices
The intrapixel response is the signal detected by a single pixel illuminated by a Dirac distribution as a function of the position of this Dirac inside this pixel. It is also known as the pixel response function (PRF). This function measures the sensitivity variation at the subpixel scale and gives a spatial map of the sensitivity across a pixel.
The reduction of systematic effects is necessary to improve the accuracy in imaging and astrometry. For example, in Euclid Mission which aims at carrying out accurate measurements of dark energy and quantifying precisely its role in the evolution of the Universe, systematic effects need at be controlled to a level better than 10-7 (Euclid, Science Book). To achieve this goal, a high-level of knowledge of the system point spread function (PSF) is required. This paper follows the concept-paper presented at the last SPIE conference1 and gives the recent developments achieved in the design of the test bench for the intrapixel sensitivity measurements. The measurement technique we use is based on the projection of a high spatial resolution periodic pattern on the detector using the self-imaging property of a new class of diffractive objects named continuously self-imaging gratings (CSIG) and developed at ONERA. The principle combines the potential of global techniques, which make measurements at once on the whole FPA, and the accuracy of spot-scan-based techniques, which provide high local precision.
The Payload Technology Validation Section (Future mission preparation Office) at ESTEC is in charge of specific mission oriented validation activities, for science and robotic exploration missions, aiming at reducing development risks in the implementation phase. These activities take place during the early mission phases or during the implementation itself. In this framework, a test set up to characterize the quantum efficiency of near infrared detectors has been developed. The first detector to be tested will an HAWAII-2RG detector with a 2.5μm cut off, it will be used as commissioning device in preparation to the tests of prototypes European detectors developed under ESA funding. The capability to compare on the same setup detectors from different manufacturers will be a unique asset for the future mission preparation office. This publication presents the performances of the quantum efficiency test bench to prepare measurements on the HAWAII-2RG detector. A SOFRADIR Saturn detector has been used as a preliminary test vehicle for the bench. A test set up with a lamp, chopper, monochromator, pinhole and off axis mirrors allows to create a spot of 1mm diameter between 700nm and 2.5μm.The shape of the beam has been measured to match the rms voltage read by the Merlin Lock –in amplifier and the amplitude of the incoming signal. The reference detectors have been inter-calibrated with an uncertainty up to 3 %. For the measurement with HAWAII-2RG detector, the existing cryostat [1] has been modified to adapt cold black baffling, a cold filter wheel and a sapphire window. An statistic uncertainty of ±2.6% on the quantum efficiency on the detector under test measurement is expected.
This paper is devoted to the presentation of a new technique of characterization of the Intra-Pixel Sensitivity Variations (IPSVs) of astronomical detectors. The IPSV is the spatial variation of the sensitivity within a pixel and it was demonstrated that this variation can contribute to the instrument global error. Then IPSV has not to be neglected especially in the case of under-sampled instruments for high quality imaging and accurate photometry. The common approaches to measure the IPSV consist in determining the pixel response function (PRF) by scanning an optical probe through the detector. These approaches require high-aperture optics, high precision mechanical devices and are time consuming. The original approach we will present in this paper consists in projecting high-resolution periodic patterns onto the whole sensor without classic optics but using the self-imaging property (the Talbot effect) of a Continuously Self Imaging Grating (CSIG) illuminated by a plane wave. This paper describes the test bench and its design rules. The methodology of the measurement is also presented. Two measurement procedures are available: global and local. In the global procedure, the mean PRF corresponding to the whole Focal Plane Array (FPA) or a sub-area of the FPA is evaluated. The results obtained applying this procedure on e2v CCD 204 are presented and discussed in detail. In the local procedure, a CSIG is moved in front of each pixel and a pixel PRF is reconstructed by resolving the inverse problem. The local procedure is presented and validated by simulations.
Today, both military and civilian applications require miniaturized and cheap optical systems. One way to achieve this trend consists in decreasing the pixel pitch of focal plane arrays (FPA). In order to evaluate the performance of the overall optical systems, it is necessary to measure the modulation transfer function (MTF) of these pixels. However, small pixels lead to higher cut-off frequencies and therefore, original MTF measurements that are able to extract frequencies up to these high cut-off frequencies, are needed. In this paper, we will present a way to extract 1D MTF at high frequencies by projecting fringes on the FPA. The device uses a Lloyd mirror placed near and perpendicular to the focal plane array. Consequently, an interference pattern of fringes can be projected on the detector. By varying the angle of incidence of the light beam, we can tune the period of the interference fringes and, thus, explore a wide range of spatial frequencies, and mainly around the cut-off frequency of the pixel which is one of the most interesting area. Illustration of this method will be applied to a 640×480 microbolometer focal plane array with a pixel pitch of 17µm in the LWIR spectral region.
The spectroscopy of the far UV emission lines of the solar spectrum combined with an imaging capability is essential to
understand the physics of the outer solar atmosphere. An imaging Fourier transform spectrometer (IFTSUV) is an
attractive instrumental solution to perform such far-UV solar observations. Working in the far UV involves high
precision metrology to maintain the optical path difference (OPD) during the entire scanning process of the
interferogram. It also involves a compact all-reflection design for UV applications. We present the specification of a
servo-system that enables dynamic tip/tilt alignment compensation and OPD sampling measurement of the IFTSUV
scanning mirror. We also discuss the first experimental results of a breadboard as well as the preliminary design of a
space-based device.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.