We present findings on High Harmonic Generation (HHG) in solids utilizing a high-energy fiber laser system operating at 1550 nm. The driving laser source comprises an Erbium-Doped Fiber chirped pulse Amplifier (EDFA) combined with a post-compression stage employing a hollow-core photonic crystal fiber (HC-PCF) filled with noble gases. Nonlinear self-compression in the HC-PCF enables the generation of ultrashort pulses with a duration of 50 fs and energy of 0.91 μJ at a repetition rate of 660 kHz. In a first step, harmonics up to H7 were observed when focusing the laser into small bandgap materials such as Zinc Oxide (ZnO). Subsequently, the system was enhanced to measure high harmonics in the extreme ultraviolet (XUV) range, with harmonics up to H25 observed using a large bandgap material, magnesium oxide (MgO). To the best of our knowledge, this represents the first solid-state HHG source driven by a high-energy few-cycle fiber laser in the telecom region.
Countless ultrafast imaging techniques have been developed and even though they brought significant insights, their application out of a laboratory environment is however often quite limited, either by the complexity of operation or by a heavy data processing. We demonstrate flexible single-shot imaging via the combination of sequentially timed all-optical mapping photography with acousto-optics programmable dispersive filtering and digital in-line holography. The frame rate and exposure time can be independently adjusted without complex shaping stages, making the system remarkably agile. In-line holography allows to achieve an even higher simplicity through its lensless operation and the reconstruction on a wide depth of field.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.