Standards activities for the next generation of Ethernet, 10 Gigabit Ethernet, are underway. Vertical Cavity Surface Emitting Lasers (VCSELs) offer significant advantages for realizing cost-effective, high speed optical data links. The progress towards achieving 10 Gb/s VCSEL-based links is reviewed.
Optical cavity light-emitting diode structures with 'buried' mirrors, and their fabrication by lateral epitaxy are described. Single-crystal, high-quality epitaxial layers are formed over substrates coated with patterned, reflective masks using liquid-phase or vapor-phase epitaxial lateral overgrowth processes. The reflecting mask acts as a backside mirror and forms an optical cavity leading to enhanced external quantum efficiencies. An AlGaAs optical cavity LED incorporating a refractory metal 'buried' mirror is assessed: a greater than 3-fold increase in output optical power is measured compared to control devices with no buried mirror. Application of the epitaxial overgrowth techniques to LED structures utilizing electron-beam deposited dielectric/semiconductor 'buried' mirrors and to other semiconductor materials, such as InGaAsSb, SiC, and ZnSe is described.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.