Proceedings Article | 4 June 2014
Proc. SPIE. 9083, Micro- and Nanotechnology Sensors, Systems, and Applications VI
KEYWORDS: Infrared sensors, Standoff detection, Sensors, Spectroscopy, Molecules, Interfaces, Quantum cascade lasers, Infrared spectroscopy, Sensing systems, Explosives
Chemical sensors based on micro/nanoelectromechanical systems (M/NEMS) offer many advantages. However, obtaining chemical selectivity in M/NEMS sensors using chemoselective interfaces has been a longstanding challenge. Despite their many advantages, M/NEMS devices relying on chemoselective interfaces do not have sufficient selectivity. Therefore, highly sensitive and selective detection and quantification of chemical molecules using real-time, miniature sensor platforms still remains as a crucial challenge. Incorporating photothermal/photoacoustic spectroscopic techniques with M/NEMS using quantum cascade lasers can provide the chemical selectivity without sacrificing the sensitivity of the miniaturized sensing system. Point sensing is defined as sensing that requires collection and delivery of the target molecules to the sensor for detection and analysis. For example, photothermal cantilever deflection spectroscopy, which combines the high thermomechanical sensitivity of a bimetallic microcantilever with high selectivity of the mid infrared (IR) spectroscopy, is capable of obtaining molecular signatures of extremely small quantities of adsorbed explosive molecules (tens of picogram). On the other hand, standoff sensing is defined as sensing where the sensor and the operator are at distance from the target samples. Therefore, the standoff sensing is a non-contact method of obtaining molecular signatures without sample collection and processing. The distance of detection depends on the power of IR source, the sensitivity of a detector, and the efficiency of the collecting optics. By employing broadly tunable, high power quantum cascade lasers and a boxcar averager, molecular recognition of trace explosive compounds (1 μg/cm2 of RDX) on a stainless steel surface has been achieved at a distance of five meters.