Optical nano-antennas have been the focus of intense research recently due to their ability to manipulate electromagnetic radiation on a subwavelength scale, and there is major interest in such devices for a wide variety of applications in photonics, sensing, and imaging. Significant effort has been put into developing highly compact, novel, next-generation light sources, which have great potential in realizing efficient sub-wavelength single photon sources and enhanced biological and chemical sensors. We have developed a number of innovative optical antenna designs including elements of chiral metasurfaces for enabling circularly polarized emission from quantum sources, new designs derived from Radio Frequency (RF) elements for quantum source enhancement and directionality, and nanostructures for investigating plasmonic dark-modes that have the ability to significantly reduce the Q-factor of nano-antennas. A challenge, however, remains the development of a scalable nanofabrication technology. The capacity to mass-produce nano-antennas will have a considerable impact on the commercial viability of these devices, and greatly improve research throughput. Here we present recent progress in the development of scalable fabrication strategies for producing of nano-antennas and antenna arrays, along with slot based plasmonic optical devices.
Optical nano-antennas have become a hot topic in photonics research recently due to their ability to manipulate electromagnetic radiation on the subwavelength scale. Of particular interest is the application of optical nano-antennas to enhancement of quantum sources such as semiconductor Quantum Dots (QD) and Nitrogen Vacancy (NV) centers in nano-diamond. Much like their Radio Frequency (RF) cousins, optical nano-antennas are able to enhance and direct radiation from a localized source in the near-field of the antenna to the far-field. The work reported here exploits RF antenna designs by applying them to the development of optical nano-antennas for enhancement of multiple semiconductor QDs. In particular, the Vee antenna design, commonly used in improvised military RF applications, is utilized in this work as an optical nano-antenna to enable the selective excitation of two different color QDs via polarization control. The Vee antenna has two bright resonant modes in the visible spectrum, typically spectrally separated by approximately 50 nm, which are excited by orthogonal polarizations of the excitation field. Using these two resonant modes of the Vee antenna, two different color QDs can be selectively enhanced. The Vee antennas are fabricated with E-beam Lithography using aluminum as the antenna material on a multilayer SiO2/Al/glass substrate. The Vee antenna design consists of two dipole antennas, orientated at 90° to each other, where the gap between the antennas and the thickness of the SiO2 spacer layer is used to tune the spectral separation of the orthogonal resonances.
Manipulation of polarization states is an important feature of many applications including in telecommunication, remote sensing and photonic computing technologies. Here we present two plasmonic nanoaperture based devices for creating and filtering circularly polarized light. One acts as an ultra-compact quarter wave plate, the other, based upon a planar chiral design, leads to asymmetric transmission of left and right circularly polarized light.
We discuss progress in the development of asymmetric cross-shaped plasmonic antennas based on resonant
nanoscale apertures surrounded by surface corrugations. By tailoring the aperture and the surrounding surface,
we show directionality and polarization control of transmitted light.
Vanadium Dioxide is an optically dense phase change material that has been applied to modulating the resonances of plasmonic structures resonant in the THz, infrared and optical ranges. It has been shown previously that fabrication of optical antennas on thin films of Vanadium Dioxide can result in a resonance shift of more than 10% across the phase change. This post-fabrication, dynamic tuning mechanism has the potential to significantly increase the possible applications of plasmonic devices.
Here, we show that optical antenna arrays fabricated on differing thicknesses of Vanadium Dioxide supported by a silicon substrate show a dependence of their resonant wavelengths on this thickness. Along with the geometry of the antennas in the arrays this constitutes an additional degree of freedom in the design of the tuning range of these devices, offering further potential for optimisation of this mechanism. The potential extra blue-shift provided by optimising this thickness may be used, for example, in lieu of reducing antenna dimensions to avoid increasing antenna absorption and the additional plasmonic heating that can result.
Surface plasmons are electrical charge oscilllations that can be excited on a metal surface by light. They provide a means by which optical energy can be converted into electrical energy and manipulated at the nanoscale. Surface plasmons can propagate as waves in waveguide devices and can exists as localised resonances in metal nanoparticles. Plasmonic circuits have been developed that mimic waveguide-based optical circuit devices, and plasmons in metal nanoparticles have been likened to excitations in electrical circuits. Although surface plasmons are electrical in nature, they preserve phase coherence with the incident optical fields that excite them. In this regard surface plasmon devices represent a convergence between optics and electronics. In this paper I review some of the work in these two fields and discuss their progress towards devices for the nanoscale control of optical signals and optical signal processing.
Focused ion beam (FIB) lithography was used to inscribe a periodic array of nanoholes directly on gold-coated optical
fiber end-faces. The excitation of the surface plasmon polaritons of the nanohole arrays on the optical fiber end-faces
provided the basis of a refractive index sensor for liquids. This optical fiber based surface plasmon resonance sensor is
compact and has the potential to be used in biomedical applications. A sensitivity of approximately 294 nm per refractive
index unit (RIU) has been demonstrated for this sensor.
The design of structures capable of producing strong electric near-fields has become an active area of plasmonics
research with applications including sensor technology, surface enhanced Raman scattering and plasmon solar cells. The
purposeful design of plasmonic systems is complicated by the problem of finding analytical solutions to Maxwell's
equations. Recently we developed a theory, based on a simplification of the boundary element method (BEM), for
modeling the interaction between plasmonic nanoparticles mediated by their evanescent electric fields. The theory makes
extensive use of "electrostatic" resonances in which the nanoparticle system is taken to be much smaller than the
wavelength of the exciting radiation. The key result is an expression describing the "electrostatic" coupling between
arbitrarily-shaped particle pairs, expressed in terms of their resonant eigenmodes. Simple analyses of two and three
particle systems predict the formation of "dark modes" in which the dipole scattering cross section becomes small but the
evanescent electric fields remain large.
The propagation of surface plasmons in thin films is important for a number of technologies and has found applications
in chemical and biological sensing. There is growing interest in the use of surface plasmons coupled with optical systems
for high density photonic devices. While the analysis of the properties of surface plasmons at a metal-dielectric interface
is straightforward, it becomes increasingly more difficult as the number of surfaces is increased, as in a multi-layer thin
film structure. In this paper we discuss recent developments in mathematical methods for studying the properties of
surface plasmons in multi-layer thin film structures of the metal-insulator-metal (MIM) type. The films may consist of a
large number of layers creating MIMIM... structures that determine the allowed modes of the surface plasmons. The
mathematical formulation is based on a matrix method that yields the eigenvalues (dispersion relation) and the
eigenfunctions (mode profiles) associated with the surface plasmons. The method is used to analyze modes in a number
of structures. In particular it is shown that modes in structures that contain an optically resonant film can have dispersion
curves that cross one another and that changing the resonances in the film can lead to switching of the surface plasmon
modes.
Resonant nanostructured metallic devices have attracted considerable recent attention through phenomena such as
extraordinary transmission and their potential application as sensing elements, metamaterials and for enhancing
nonlinear optical effects. Here we report on the investigation of the geometry and material properties on the performance
of periodic and random arrays of coaxial apertures in thin metallic films. Such apertures in perfect conductors have been
shown to resonate at a wavelength governed by the geometry of the apertures leading to enhanced transmission. This
resonant wavelength is dictated by the cutoff wavelength of the fundamental mode propagating in the corresponding
coaxial waveguide and, as a consequence, is largely independent of whether the apertures are isolated or in random or
periodic arrangements. In the case of periodic samples, however, these resonances can coherently couple to surface
waves to produce an analogue of the enhanced optical transmission seen in arrays of circular and other apertures. We
have previously shown that as the width of the rings decreases, there are substantial red-shifts in the resonant wavelength
from that predicted for perfect conductivity when the optical properties of the metal are considered. Here we report on
recent developments in fabrication, design and modelling of metallic resonant structures and their near- and far-field
optical characterisation. In particular, we consider the relationship between random and regular arrangements of
apertures.
Recently there has been a drive to create artificial optical materials, or meta-materials, with a specified electrical permittivity and magnetic permeability at optical frequencies. Control over these properties can give rise to new physical phenomena, such as a negative refractive index and "super lensing", with potential applications in nanophotonic systems and nanolithography. Because most materials do not exhibit magnetic behaviour at optical frequencies, control over the effective magnetic permeability is achieved using patterned metal structures much smaller than the wavelength of light. The electric currents induced in the structures produce magnetic fields that may be in phase or may oppose the magnetic field of the incident light. When combined with dielectric materials, these structuresform coupled inductor-capacitor (LC) circuits that can resonate at frequencies in the optical spectrum. Since the resonant properties of the LC circuits control the properties of the meta-material, it is important to understand how changes in shape, size and the position of the subwavelength components affect the resonances. Using the Finite Difference Time Domain (FDTD) method, we study a number of different inductor-capacitor configurations. By applying the concepts of lumped impedance to the electromagnetic fields, the resonant frequencies and Q factors of the tuned optical circuits are determined from the FDTD data. Our in-house electron beam lithography system has been used to fabricate some of the structures. Results of the simulations, the nano-fabrication process and experiments on the meta-materials will be presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.