KEYWORDS: Reflectivity, Luminescence, Confocal microscopy, In vivo imaging, Retinal scanning, Fluorescence lifetime imaging, Retina, Signal detection, Visualization, Imaging systems
We have developed a compact hollow core fiber (HCF)-based imaging platform capable of simultaneous in vivo confocal reflectance and two-photon imaging through the mouse pupil. We demonstrate the performance of this platform by imaging retinal ganglion cells (RGCs) in which the fluorophores YFP and GCaMP3 are expressed in Thy1-YFP-16 and Thy1-GCaMP3 transgenic mice, respectively. Confocal reflectance images of the mouse retina served as a reference for the simultaneous acquisition of the two-photon signals that clearly showed RGCs with single-cell resolution. The use of an HCF platform makes the system compact with future application in the longitudinal investigation into the structure and function of healthy and diseased RGCs.
In the last 25 years, optical coherence tomography (OCT) has advanced to be one of the most innovative and most successful translational optical imaging techniques, achieving substantial economic impact as well as clinical acceptance. This is largely owing to the resolution improvements by a factor of 10 to the submicron regime and to the imaging speed increase by more than half a million times to more than 5 million A-scans per second, with the latter one accomplished by the state-of-the-art swept source laser technologies that are reviewed in this article. In addition, parallelization of OCT detection, such as line-field and full-field OCT, has shortened the acquisition time even further by establishing quasi-akinetic scanning. Besides the technical improvements, several functional and contrast-enhancing OCT applications have been investigated, among which the label-free angiography shows great potential for future studies. Finally, various multimodal imaging modalities with OCT incorporated are reviewed, in that these multimodal implementations can synergistically compensate for the fundamental limitations of OCT when it is used alone.
Immunization is one of the most efficient and cost-effective means for the prevention of diseases, but most vaccines
have to be administered invasively. A novel strategy of inducing an immune response is topical application of vaccines
to intact skin. Apart from being a non-invasive route of drug delivery, skin delivery also offers an advantageous mode
of immunization due to the ability of skin immune cells to present antigens to the immune system. Topical vaccine
penetration through the outermost layers of skin is based on the percutaneous diffusion of lipid-based nano-particles. In
the current study we investigate the applicability of Optical Coherence Tomography for monitoring transcutaneous delivery
of a peptide vaccine into the skin in vivo.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.