We propose a novel concept for a semiconductor-based single-photon detector for quantum information processing,
which is capable of discriminating the number of photons in a light pulse. The detector exploits the charge transport by a
surface acoustic wave (SAW) in order to combine a large photon absorption area (thus providing high photon collection
efficiency) with a microscopic charge detection area, where the photo generated charge is detected with resolution at the
single electron level using single electron transistors (SETs). We present preliminary results on acoustic transport
measured in a prototype for the detector as well as on the fabrication of radio-frequency single-electron transistors (RFSETs)
for charge detection. The photon detector is a particular example of acousto-electric nanocircuits that are
expected to be able to control both the spatial and the spin degrees of freedom of single electrons. If realized, these
circuits will contribute substantially to a scalable quantum information technology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.