In this work, we demonstrate the establishment of a self-injection locking threshold in a quantum dot (QD) comb laser with a Fabry-Perot cavity and an external feedback loop. This process involves controlling injection power and polarization to inject a controlled fraction of lasing power back into the QD laser source. The study is focused on the single line self-injection locking effects. The self-injection locking process was characterized by a self-injection locking threshold power (PSIL) and a locked power (Plocked). The self-injection locking process begins from the threshold power PSIL and followed by a magnified enhancement till it reaches the locked power (Plocked). Once in the locked region, the enhancement effect starts to stabilize and is only weakly influenced by injection power. The established threshold provides a distinctive condition for the measurements of the modified optical properties of the coupled cavity system. Additionally, the locked single lines tested at different currents indicated a very broad spectral coverage which are much larger than the original bandwidth of free running QD laser.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.