Spectroscopy is the basic tool for studying molecular physics and realizing biochemical sensing. However, it is challenging to realize sub-femtometer resolution spectroscopy over broad bandwidth. Broadband and high-resolution spectroscopy with calibrated optical frequency is demonstrated by bridging the fields of speckle pattern and electro-optic frequency comb. A wavemeter based on a whispering-gallery-mode barcode is proposed to link the frequencies of a probe continuous-wave laser and an ultrastable laser. The ultrafine electro-optic comb lines are generated from the probe laser to record spectrum of sample with sub-femtometer resolution. Measurement bandwidth is a thousandfold broader than comb bandwidth, by sequentially tuning the probe laser while its wavelength is determined. This approach fully exploits the advantages of two fields to realize 0.8-fm resolution with a fiber laser and 80-nm bandwidth with an external cavity diode laser. The spectroscopic measurements of an ultrahigh Q-factor cavity and gas molecular absorption are experimentally demonstrated. The compact system, predominantly constituted by few-gigahertz electronics and telecommunication components, shows enormous potential for practical spectroscopic applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.