Based on the analysis of Talbot phase-locking theory of edge emitting semiconductor lasers, a method to obtain a single in-phase mode on a tapered laser chip is proposed. A phase-locked model with 1/2 Talbot spatial filter cavity for mode selection placed between 8 emitters on each facet is set up. Based on the mode coupling rate equation theory, the parallel coupling phase-locking conditions with different fill factors is analyzed. The results show that the stable parallel coupling phase lock can be achieved for 8 emitters with the pitch of 20 um, when the fill factor is set between 0.06 and 0.12, and the phase-locking time is about 3 ns. The supermode threshold gains are also calculated under different fill factors. In the phase-locked model, when the fill factor is approximately 0.1, the threshold gain difference between the in-phase mode and out-phase mode could reach the maximum, which is around 78cm-1 . Therefore, single in-phase mode output of this novel laser with Talbot cavity becomes more robust. The simulation analysis provides a reliable theoretical support for the preparation of a coherent array laser with a single in-phase mode output.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.