Fiber grating sensing technology is a widely used fiber optic sensing technology due to its ability to form a distributed sensing system for measuring multiple parameters. The number of multiplexed gratings and spatial resolution are important performance indicators of fiber Bragg grating (FBG) sensing systems. This paper proposes a fast distributed temperature measurement system based on the Optical Frequency Domain Reflectometry (OFDR) principle, using a single-mode fiber engraved with five identical weak gratings spaced 30cm apart with a reflectivity of 1% as the sensing fiber. To minimize the impact of light source nonlinearity on demodulation, we use the SiO2 process Mach-Zehnder interferometer (MZI) module with a refractive index difference of 1.5 as an auxiliary interferometer and employ cubic spline interpolation FFT transformation for signal processing. This approach simplifies the design of the laser drive circuit and achieves a temperature resolution of 0.5°C.
The measurement of refractive index plays a crucial role in biosensing. This paper proposes a novel solution for refractive index sensing by utilizing seven-core fiber spatial multiplexing to receive the spectrum of a no-core fiber. Compared to existing high-sensitivity fiber sensing structures like core offset and polishing, this solution offers the advantages of easy production and a simplified process. In terms of spectral demodulation methods, this solution employs deep neural networks to replace the traditional approach of tracking spectral peaks or troughs. By utilizing the entire spectrum information, the accuracy of spectral demodulation is significantly improved. Additionally, the use of seven-core fiber with spatial multiplexing characteristics allows for the reception of a larger amount of information compared to single-mode fiber, thereby further enhancing the refractive index sensing capability. The results demonstrate that this solution achieves a remarkable refractive index sensing accuracy rate of 2.25×10-5.
A low-cost near-infrared spectrometer based on fiber beam scanning and linear variable filter (LVF) was proposed and demonstrated. The key elements of the spectrometer include a piezoelectric driven fiber scanner, an LVF monochromator, and a single point detector. The single fiber scanner provides a new way to continuously sweep the LVF. A PIN photodiode behind the LVF monochromator can acquire more spectral information than the traditional linear array detection. The performance of the spectrometer was verified with a narrow band tunable laser and a broadband light source. With the help of a deconvolution algorithm, the spectral resolution of the proposed spectrometer is up to 0.32% of the center wavelength (≈5 nm@1550 nm).
Hyperspectral image (HSI) contains both spatial pattern and spectral information, which has been widely used in food safety, remote sensing, and medical detection. However, the acquisition of HSIs is usually costly due to the complicated apparatus for the acquisition of optical spectrum. Recently, it has been reported that HSI can be reconstructed from single RGB image using convolution neural network (CNN) algorithms. Compared with the traditional hyperspectral cameras, the method based on CNN algorithms is simple, portable, and low cost. In this study, we focused on the influence of the RGB camera spectral sensitivity (CSS) on the HSI. A xenon lamp incorporated with a monochromator was used as the standard light source to calibrate the CSS. And the experimental results show that the CSS plays a significant role in the reconstruction accuracy of an HSI. In addition, we proposed a new HSI reconstruction network where the dimensional structure of the original hyperspectral datacube was modified by 3D matrix transpose to improve the reconstruction accuracy.
We investigated the up-conversion fluorescence characteristics of the bismuth doped silica fibers with and without Al codopant
(BA fiber and BI fiber). Unusual up-conversion fluorescence was discovered in both of these two fibers when
excited by pump lasers. After more experiments, it was found that the BI fiber showed more complicated and distinct upconversion
spectrum than the BA fiber, but with different and weaker NIR emission as we reported before. And it was
implied that the up-conversion fluorescence should be mainly responsible for the Bi2+ ions which was rich in BI fiber.
Thus, by properly improve the Al co-doping concentration could alleviate the fluorescence up-conversion thus improve
the efficiency of the NIR band fluorescence. Besides, the complicated up-conversion fluorescence bands may helpful to
clarify the energy levels of the Bi ions in silica materials.
A fiber thermometer using the cross detection of the fluorescence lifetime and blackbody radiation was presented to measure temperature from -10°C up to 1400°C. Using a long pure YAG crystal fiber as the seed and a 0.1 at. % Cr2O3-doped Y3Al5O12 sintered powder rod as the source rod, a YAG fiber thermal probe with Cr3+ -ions doped end was grown by laser heated pedestal growth method. A blackbody cavity was constructed by sintered a thin ceramic layer around the Cr3+: YAG fiber end. A phase-locked detection scheme was used for the fluorescence lifetime detection. The fluorescence characteristics of the Cr3+-ions doped YAG was analyzed in a temperature range from -10°C up to 500°C. From 350°C to 1400°C the blackbody radiation signal in a narrow waveband were detected. Because the fluorescence lifetime was intensity independent, it should have the long-term stability and would not change if the fiber connectors of the probes were realigned. So the fluorescence lifetime based temperature measurement could be used to recalibrate that based on the blackbody radiation detection. Preliminary experimental results showed that the system could achieve a resolution much better than 1°C over the whole temperature range from -10°C to 1400°C.
The temperature-dependent characteristics of fluorescence of transient-metal doped and/or rare-earth-doped YAG has made these materials the focus of fluorescence thermometer. This article reports growth and fluorescence characteristics of Cr3+: YAG crystal fiber used for thermometer based on fluorescence decay time. Using a long pure YAG crystal fiber as the seed and a 0.1 at. % Cr2O3-doped Y3Al5O12 sintered powder rod as the source rod, a YAG fiber thermal probe with Cr3+-ions doped end was grown by laser heated pedestal growth method. The crystal fiber shows good optical properties and mechanical strength and offers advantages of compact construct, high performance and ability to withstand high temperature. The fluorescence decay characteristics of the crystal fiber, including the temperature dependence of both fluorescence decay time and intensity, were comprehensively investigated. The experimental results indicated the Cr3+:YAG crystal fiber showed a monotonic relationship between the fluorescence lifetime and temperature over a wide temperature range from cryogenic to high temperature(>500°C). The fiber was found to be an excellent candidate material to be used as a fiber thermometer based on fluorescence lifetime. This thermometer may be used as temperature monitor in microwave treatment and Medium Voltage substations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.