A numerical approach to calculate the power transfer between nanoscale waveguides was proposed. Series of complex power-transfer simulations have been performed when comparing two adjacent waveguides made of different materials. The results showed interesting focusing phenomena when coupling a waveguide sharing a high power confinement factor to a waveguide sharing a low one. In addition, we describe the physical properties of a nanoscale integrable waveguide for smooth integration in the microelectronics industry and analyze two case studies regarding such a possible integration. It seems that due to the lack of ability to confine the mode inside a nanoscale dimensions waveguide, combining waveguides with current size transistor may be, at this stage, difficult to realize without specific fits of the whole module.
A Y-junction of low-difference refractive-index (RI) and coupler as its input was designed and simulated. The simulation uses COMSOL Multi-Physics Software Package, allowing varying crucial parameters. A detailed analysis and optimization of the device for single-mode design was made, in order to achieve a maximum input area error while preserving a good 50-50 splitting ratio. This approach of combined design and simulations of special Y-junction can benefit and predict advanced optical communication.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.