We demonstrate high volume manufacturing feasibility of 7 nm technology overlay correction requirement. This stateof- the-art overlay control is achieved by (i) overlay sampling optimization and advanced modeling, (ii) alignment and advanced process control optimization, (iii) multiple target overlay optimization, and (iv) heating control. We will also discuss further improvements in overlay control for 7 nm technology node and beyond including computational metrology, extreme ultraviolet and optic tools overlay matching control, high order alignment correction, tool stability improvement, and advanced heating control.
As the demand of the technology node shrinks from 14nm to 7nm, the reliability of tool monitoring techniques in advanced semiconductor fabs to achieve high yield and quality becomes more critical. Tool health monitoring methods involve periodic sampling of moderately processed test wafers to detect for particles, defects, and tool stability in order to ensure proper tool health. For lithography TWINSCAN scanner tools, the requirements for overlay stability and focus control are very strict. Current scanner tool health monitoring methods include running BaseLiner to ensure proper tool stability on a periodic basis. The focus measurement on YIELDSTAR by real-time or library-based reconstruction of critical dimensions (CD) and side wall angle (SWA) has been demonstrated as an accurate metrology input to the control loop. The high accuracy and repeatability of the YIELDSTAR focus measurement provides a common reference of scanner setup and user process. In order to further improve the metrology and matching performance, Diffraction Based Focus (DBF) metrology enabling accurate, fast, and non-destructive focus acquisition, has been successfully utilized for focus monitoring/control of TWINSCAN NXT immersion scanners. The optimal DBF target was determined to have minimized dose crosstalk, dynamic precision, set-get residual, and lens aberration sensitivity. By exploiting this new measurement target design, ~80% improvement in tool-to-tool matching, >16% improvement in run-to-run mean focus stability, and >32% improvement in focus uniformity have been demonstrated compared to the previous BaseLiner methodology. Matching <2.4 nm across multiple NXT immersion scanners has been achieved with the new methodology of set baseline reference. This baseline technique, with either conventional BaseLiner low numerical aperture (NA=1.20) mode or advanced illumination high NA mode (NA=1.35), has also been evaluated to have consistent performance. This enhanced methodology of focus control and monitoring on multiple illumination conditions, opens an avenue to significantly reduce Focus-Exposure Matrix (FEM) wafer exposure for new product/layer best focus (BF) setup.
Wafers at FBEOL layers traditionally have higher stress and larger alignment signal variability. ASML’s ATHENA sensor based scanners, commonly used to expose FBEOL layers, have large spot size (~700um). Hence ATHENA captures the signal from larger area compared to the alignment marks which are typically ~40um wide. This results in higher noise in the alignment signal and if the surrounding areas contain periodic product structures, they interfere with the alignment signal causing either alignment rejects or in some cases- misalignment. SMASH alignment sensors with smaller spot size (~40um) and two additional probe lasers have been used to improve alignment quality and hence reduce mark/wafer rejects. However, due to the process variability, alignment issues still persist. For example, the aluminum grain size, alignment mark trench deposition uniformity, alignment mark asymmetry and variation in stack thicknesses all contribute to the alignment signal variability even within a single wafer. Here, a solution using SMASH sensor that involves designing new alignment marks to ensure conformal coating is proposed. Also new techniques and controls during coarse wafer alignment (COWA) and fine wafer alignment (FIWA) including extra controls over wafer shape parameters, longer scan lengths on alignment marks and weighted light source between Far Infra-Red laser (FIR) and Near Infra-Red (NIR) for alignment are presented. All the above mentioned techniques, when implemented, have reduced the wafer alignment reject rate from around 25% to less than 0.1%. Future work includes mark validation based on the signal response from the various laser colors. Finally, process monitoring using alignment parameters is explored.
With decreasing CDOF (Critical Depth Of Focus) for 20/14nm technology and beyond, focus errors are becoming increasingly critical for on-product performance. Current on product focus control techniques in high volume manufacturing are limited; It is difficult to define measurable focus error and optimize focus response on product with existing methods due to lack of credible focus measurement methodologies. Next to developments in imaging and focus control capability of scanners and general tool stability maintenance, on-product focus control improvements are also required to meet on-product imaging specifications. In this paper, we discuss focus monitoring, wafer (edge) fingerprint correction and on-product focus budget analysis through diffraction based focus (DBF) measurement methodology. Several examples will be presented showing better focus response and control on product wafers. Also, a method will be discussed for a focus interlock automation system on product for a high volume manufacturing (HVM) environment.
We demonstrate a cost-effective automated rule based sparse sampling method that can detect the spatial variation of overlay errors as well as the overlay signature of the fields. Our technique satisfies the following three rules: (i) homogeneous distribution of ~200 samples across the wafer, (ii) equal number of samples in scan up and scan down condition and (iii) equal number of sampling on each overlay marks per field. When rule based samplings are implemented on the two products, the differences between the full wafer map sampling and the rule based sampling are within 3.5 nm overlay spec with residuals M+3σ of 2.4 nm (x) and 2.43 nm (y) for Product A and 2.98 nm (x) and 3.32 nm (y) for Product B.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.