During the hardware-in-the-loop simulation of multimode compound guidance, it is common for the receiving antenna center to deviate from the rotation center of the turntable. In this regard, this paper proposes a method for dynamic target simulation of non-coplanar multimode radar. The corrected position of the target simulation at any receiving antenna center position and any target theoretical position is derived through the spatial geometric relationship. Aiming at the situation where the target position after correction is outside the original triad of antenna array, the target localization vector control method of the triad of antenna array at any observation position is proposed. Using this method as a criterion for pros and cons, the particle swarm optimization algorithm can be used to simulate targets at any location. The error between the expected angles and the corrected angles is within 0.02° according to the digital simulation. This accuracy can satisfy the dynamic target simulation requirement in the hardware-in-the-loop simulation.
Light detection and ranging (LiDAR) return signal generation technology applied in the LiDAR indoor test and simulation is significant to design, develop, test, and validate a LiDAR’s capability and performance. To generate a target’s information carried by the return signal, the dimensional decomposition and equivalent generation method of the LiDAR return signal are proposed. The target four-dimensional (4D) information is decomposed into one-dimensional (1D) intensity information, 1D range information, and two-dimensional (2D) angle–angle spatial information. The 1D intensity information is simulated by the absorption of prism pairs, while the 1D range information is simulated by the combination of electrical and optical time delay. The 2D angle–angle spatial information is implemented by the stack of segmented digital mirror array device slice images in sequence. Moreover, a LiDAR return scene projector (LRSP) prototype is developed and its performance is measured. The results show that its energy dynamic range is 51.25 dB. The distance simulation range is 240.15 m to 22.5 km (1.601 to 150 μs). The simulation accuracy of the target’s depth is <9 cm (0.6 ns). The spatial resolution of 64 × 64 pixels is verified by vertical and horizontal line pairs test. Because the LRSP has 12 image slices, its resolution is 64 × 64 × 12 pixels in three-dimensional (3D) space. Finally, the prototype is demonstrated by reconstructing a staircase. The energy dynamic and 2D angle-angle spatial resolution are improved significantly compared with the existing LRSPs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.