Improving light extraction for OLED devices will be pivotal for their acceptance into the marketplace. Incorporating
nanostructures within the high refractive index regions of the OLED multi-layer stack results in an over two-fold
improvement in light extraction efficiency. Such nanostructures were made using roll-to-roll fabrication processes. We
will also discuss the performance characteristics of the nanostructures on color-angularity and blurring of high-resolution
pixels.
KEYWORDS: Optical spheres, Near field optics, Photomasks, Silicon carbide, Glasses, Scanning electron microscopy, Near field, Nanostructures, Titanium, Optical lithography
An aggressive pursuit for ever decreasing the minimum feature size in modern integrated circuit has lead to various challenges in nanofabrication. Finer feature size is very desirable in microelectronics and other applications for higher performance. However, it is difficult to achieve critical dimensions at sub-wavelength scale using traditional optical lithography techniques due to the optical diffraction limit. We developed several techniques to overcome this diffraction limit and simultaneously achieve massive, parallel patterning. One of the methods involves the principle of optical near-field enhancement between the spheres and substrate when irradiated by a laser beam, for obtaining the nano-features. Nonlinear absorption of the enhanced optical field between the spheres and substrate sample was believed to be the primary reason for the creation of nano-features. Also, we utilized the near-field enhancement around nanoridges and nanotips upon pulsed laser irradiation to produce line or dot patterns in nanoscale on gold thin films deposited on glass substrates. We demonstrated that the photolithography can be extended to a sub-wavelength resolution for patterning any substrate by exciting the surface plasmons on both metallic mask and a shield layer covering the substrate. We used laser-assisted photothermal imprinting method for directly nanopatterning carbon nanofiber-reinforced polyethylene nanocomposite.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.