In this work, we report metrology solutions using scatterometry Optical Critical Dimension (OCD)
characterization on two advanced CMOS devices: novel n-channel gate-last In0.53Ga0.47As FinFET with
self-aligned Molybdenum (Mo) contacts and p-channel Ge FinFET formed on Germanium-on-Insulator
(GOI) substrate. Key critical process steps during the fabrication of these advanced transistors were
identified for process monitor using scatterometry OCD measurement to improve final yield. Excellent
correlation with reference metrology and high measurement precision were achieved by using OCD
characterization, confirming scatterometry OCD as a promising metrology technique for next generation
device applications. In addition, we also further explore OCD characterization using normal incidence
spectroscopic reflectometry (SR), oblique incidence spectroscopic ellipsometry (SE), and combined SR+SE
technologies. The combined SR+SE approach was found to provide better precision.
KEYWORDS: Germanium, Scatterometry, Transmission electron microscopy, Scanning electron microscopy, Transistors, Metrology, Etching, Front end of line, 3D modeling
In this work, we report the first demonstration of scatterometry Optical Critical Dimension (OCD) characterization on advanced Ge Multi-Gate Field-Effect Transistor (MuGFET) or FinFET formed on a Germanium-on-Insulator (GeOI) substrate. Two critical process steps in the Ge MuGFET process flow were investigated, i.e. after Ge Fin formation, and after TaN gate stack etching process. All key process variations in the test structures were successfully monitored by the floating or fitting parameters in the OCD models. In addition, excellent static repeatability, with 3σ lower than 0.12 nm, was also achieved. The measurement results from OCD were also compared with both Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) measurements. Excellent correlation with both SEM and TEM was achieved by employing OCD characterization, confirming scatterometry OCD as a promising metrology technique for next generation multi-gate transistor with an advanced channel material.
KEYWORDS: Semiconducting wafers, Overlay metrology, 3D acquisition, 3D metrology, Finite element methods, Diffraction gratings, Time metrology, Spectroscopy, Reflectance spectroscopy, 3D modeling
Diffraction-based overlay (DBO) technologies have been developed to address the overlay metrology
challenges for 22nm technology node and beyond. Most DBO technologies require specially designed targets that
consist of multiple measurement pads, which consume too much space and increase measurement time. The traditional
empirical approach (eDBO) using normal incidence spectroscopic reflectometry (NISR) relies on linear response of the
reflectance with respect to overlay displacement within a small range. It offers convenience of quick recipe setup since
there is no need to establish a model. However it requires three or four pads per direction (x or y) which adds burden to
throughput and target size. Recent advances in modeling capability and computation power enabled mDBO, which
allows overlay measurement with reduced number of pads, thus reducing measurement time and DBO target space. In
this paper we evaluate the performance of single pad mDBO measurements using two 3D targets that have different
grating shapes: squares in boxes and L-shapes in boxes. Good overlay sensitivities are observed for both targets. The
correlation to programmed shifts and image-based overlay (IBO) is excellent. Despite the difference in shapes, the
mDBO results are comparable for square and L-shape targets. The impact of process variations on overlay measurements
is studied using a focus and exposure matrix (FEM) wafer. Although the FEM wafer has larger process variations, the
correlation of mDBO results with IBO measurements is as good as the normal process wafer. We demonstrate the
feasibility of single pad DBO measurements with faster throughput and smaller target size, which is particularly
important in high volume manufacturing environment.
As the dimensions of integrated circuit continue to shrink, diffraction based overlay (DBO) technologies have
been developed to address the tighter overlay control challenges. Previously data of high accuracy and high precision
were reported for litho-etch-litho-etch double patterning (DP) process using normal incidence spectroscopic
reflectometry on specially designed targets composed of 1D gratings in x and y directions. Two measurement methods,
empirical algorithm (eDBO) using four pads per direction (2x4 target) and modeling based algorithm (mDBO) using two
pads per direction (2x2 target) were performed. In this work, we apply DBO techniques to measure overlay errors for a
different DP process, litho-freeze-litho-etch process. We explore the possibility of further reducing number of pads in a
DBO target using mDBO. For standard targets composed of 1D gratings, we reported results for eDBO 2x4 targets,
mDBO 2x2 targets, and mDBO 2x1 target. The results of all three types of targets are comparable in terms of accuracy,
dynamic precision, and TIS. TMU (not including tool matching) is less than 0.1nm. In addition, we investigated the
possibility of measuring overlay with one single pad that contains 2D gratings. We achieved good correlation to blossom
measurements. TMU (not including tool matching) is ~ 0.2nm. To our best knowledge, this is the first time that DBO
results are reported on a single pad. eDBO allows quick recipe setup but takes more space and measurement time.
Although mDBO needs details of optical properties and modeling, it offers smaller total target size and much faster
throughput, which is important in high volume manufacturing environment.
Scatterometry has been used extensively for the characterization of critical dimensions (CDs) and detailed sidewall profiles of periodic structures in microelectronics fabrication processes. In most cases devices are designed to be symmetric, although errors could occur during the fabrication process and result in undesired asymmetry. Conventional optical scatterometry techniques have difficulties distinguishing between left and right asymmetries. We investigate the possibility of measuring grating asymmetry with Mueller matrix spectroscopic ellipsometry (MM-SE) for a patterned hard disk sample prepared by a nanoimprint technique. The relief image on the disk sometimes has an asymmetrical sidewall profile, presumably due to the uneven separation of the template from the disk. Cross section SEM reveals that asymmetrical resist lines are typically tilted toward the outer diameter direction. Simulation and experimental data show that certain Mueller matrix elements are proportional to the direction and amplitude of profile asymmetry, providing a direct indication to the sidewall tilting. The tilting parameter can be extracted using rigorous optical critical dimension (OCD) modeling or calibration methods. We demonstrate that this technique has good sensitivity for measuring and distinguishing left and right asymmetry caused by sidewall tilting, and can therefore be used for monitoring processes for which symmetric structures are desired.
Diffraction based overlay (DBO) technologies have been developed to address the tighter overlay control
challenges as the dimensions of integrated circuit continue to shrink. Several studies published recently have
demonstrated that the performance of DBO technologies has the potential to meet the overlay metrology budget for
22nm technology node. However, several hurdles must be cleared before DBO can be used in production. One of the
major hurdles is that most DBO technologies require specially designed targets that consist of multiple measurement
pads, which consume too much space and increase measurement time. A more advanced spectroscopic ellipsometry (SE)
technology-Mueller Matrix SE (MM-SE) is developed to address the challenge. We use a double patterning sample to
demonstrate the potential of MM-SE as a DBO candidate. Sample matrix (the matrix that describes the effects of the
sample on the incident optical beam) obtained from MM-SE contains up to 16 elements. We show that the Mueller
elements from the off-diagonal 2x2 blocks respond to overlay linearly and are zero when overlay errors are absent. This
superior property enables empirical DBO (eDBO) using two pads per direction. Furthermore, the rich information in
Mueller matrix and its direct response to overlay make it feasible to extract overlay errors from only one pad per
direction using modeling approach (mDBO). We here present the Mueller overlay results using both eDBO and mDBO and compare the results with image-based overlay (IBO) and CD-SEM results. We also report the tool induced shifts (TIS) and dynamic repeatability.
Patterned media is expected to be implemented in future generations of hard disk drives to provide data storage at
densities exceeding 1012 bits/in2 and beyond. The implementation of patterned media, which would involve developing
processing methods to offer high resolution (small bits), regular patterns, and high density, has posed a number of
metrology challenges. Optical Critical Dimension (OCD) is the leading candidate to overcome the metrology challenges
for patterned media. This paper presents the successful OCD measurements on the critical dimensions, sidewall-angles,
and detailed sidewall shape of gratings of quartz template and imprint disk with pitch as small as 57nm.
With pitches in the double-digit nanometer range and depths in the single-digit nanometer range, superior sensitivity is a
necessary metrology requirement for patterned media. Variations in depth, CD, and sidewall angle on the order of the
desired measurement precision will change the measured raw data by a miniscule amount, around one per cent or less.
It is shown that the required sensitivity can be achieved with polarized broad band reflectance and transmittance
incorporating optimized signal-to-noise and analysis based on Rigorous Coupled-Wave Analysis (RCWA) in
conjunction with the Forouhi-Bloomer dispersion equations for optical properties, n and k. The measurement capabilities
are demonstrated with simulations and examples of various DTR and BPM structures.
Scatterometry has been used extensively for the characterization of critical dimensions (CD) and detailed
sidewall profiles of periodic structures in microelectronics fabrication processes. So far the majority of applications are
for symmetric gratings. In most cases devices are designed to be symmetric although errors could occur during
fabrication process and result in undesired asymmetry. The problem with conventional optical scatterometry techniques
lies in the lack of capability to distinguish between left and right asymmetries. In this work we investigate the possibility
of measuring grating asymmetry using Mueller matrix spectroscopic ellipsometry (MM-SE). A patterned hard disk
prepared by nano-imprint technique is used for the study. The relief image on the disk sometimes has asymmetrical
sidewall profile, presumably due to the uneven separation of the template from the disk. The undesired tilting resist
profile causes difficulties to the downstream processes or even makes them fail. Cross-section SEM reveals that the
asymmetrical resist lines are typically tilted towards the outer diameter direction. The simulation and experimental data
show that certain Mueller matrix elements are proportional to the direction and amplitude of profile asymmetry,
providing a direct indication to the sidewall tilting. The tilting parameter can be extracted using rigorous optical critical
dimension (OCD) modeling or calibration method. We demonstrate that this technique has good sensitivity for
measuring and distinguishing left and right asymmetry caused by sidewall tilting, and can therefore be used for
monitoring processes, such as lithography and etch processing, for which symmetric structures are desired.
This paper examines the extendibility of the scatterometry techniques to characterize structures pushing the limits of
current lithographic printing technologies. In particular, we investigate the limits of normal-incidence optical CD (NIOCD)
measurements using the smallest features afforded by the most recent generation of hyper-NA immersion
scanners. Special analysis techniques have also been developed and applied to cases relevant to double exposure and
double patterning lithography. Models were used successfully to decouple CD and overlay values associated with
patterning the first and second set of features on the wafer, using a single scatterometry measurement. These advances
pave the way to the development of full solutions for the general case of double patterning structures with two different
populations of lines or structures.
In addition, the current study focused on seeking a better understanding of the use of scatterometry 3D features
characterization, particularly as it relates to OPC model building and verification. The demonstration of tip-to-tip
measurements on 3D structures is very encouraging as it introduces the advantages of scatterometry, such as reduced
influence of line-edge roughness (LER) and better precision, to the practice of advanced OPC model building.
Demanding sub-45 nm node lithographic methodologies such as double patterning (DPT) pose significant challenges for
overlay metrology. In this paper, we investigate scatterometry methods as an alternative approach to meet these stringent
new metrology requirements. We used a spectroscopic diffraction-based overlay (DBO) measurement technique in
which registration errors are extracted from specially designed diffraction targets for double patterning. The results of
overlay measurements are compared to traditional bar-in-bar targets. A comparison between DBO measurements and
CD-SEM measurements is done to show the correlation between the two approaches. We discuss the total measurement
uncertainty (TMU) requirements for sub-45 nm nodes and compare TMU from the different overlay approaches.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.