We propose a design for all-dielectric (gallium phosphide, GaP) nanoantenna to enhance single molecule fluorescence. The slotted GaP nanodisk exhibits strong scattering and limited optical loss, resulting in more than 30× excitation enhancement growth at the resonance position. Our proposed scheme also enables precise manipulation of the local density of optical states, leading to a nearly one order of magnitude increments in quantum yield for individual dye (original quantum yield is 0.01) and 12× emission enhancement. We benchmark the overall fluorescent enhancement for the four commercial dye colors (original quantum yield is 0.3) and achieved one-order of enhancement higher than commercialized zero-mode waveguide (ZMW) in the simulation. Our GaP-based design not only provides a solution for next-generation chips for DNA and protein sequencing, but also contributes to single-entity interactions, portable fluorescence detection, and integrated devices with quantum light sources.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.