Proceedings Article | 10 February 2011
Proc. SPIE. 7924, Atmospheric and Oceanic Propagation of Electromagnetic Waves V
KEYWORDS: Transmitters, Fiber amplifiers, Second-harmonic generation, Modulation, Backscatter, LIDAR, Signal attenuation, Receivers, Fiber lasers, Underwater imaging
We present results on the design, development and initial testing of a fiber-optic based RF-modulated lidar transmitter
operating at 532nm, for underwater imaging application in littoral waters. The design implementation is based on using
state-of-the-art high-speed FPGAs, thereby producing optical waveforms with arbitrary digital-RF-modulated pulse
patterns with carrier frequencies ≥ 3GHz, with a repetition rate of 0.5-1MHz, and with average powers ≥5W (at 532nm).
Use of RF-modulated bursts above 500MHz, instead of single optical pulse lidar detection, reduces the effect of
volumetric backscatter for underwater imaging application, leading to an improved signal-to-noise-ratio (SNR) and
contrast, for a given range. Initial underwater target detection tests conducted at Patuxent River Naval Air Station, MD,
in a large water-tank facility, validates the advantages of this hybrid-lidar-radar (HLR) approach for improved
underwater imaging, over a wide range of turbidity levels and both white and black targets. The compact, robust and
power-efficient fiber laser architecture lends very well to lidar sensor integration on unmanned-underwater-vehicle
(UUV) platforms. HLR transmitters can also provide similar advantages in active-sensing situations dominated by
continuous backscatter, e.g. underwater communications, imaging through smoke and fire environment, rotor-craft
landing in degraded visual environment, and pointing-tracking of active-EO sensors through fog.