Problem: The gold standard for prostate cancer diagnosis is B-mode transrectal ultrasound-guided systematic core needle biopsy. However, cancer is indistinguishable under ultrasound and thus additional costly imaging methods are necessary to perform targeted biopsies. Speed of sound is a potential biomarker for prostate cancer and has the potential to be measured using ultrasound tomography. Given the physical constraints of the prostate’s anatomy, this work explores a simulation study using deep learning for limited-angle ultrasound tomography to reconstruct speed of sound. Methods: A deep learning-based image reconstruction framework is used to address the limited-angle ultrasound tomography problem. The training data is generated using the k-wave acoustic simulation package. The general network structure is composed of a series of dense fully-connected layers followed by an encoder and a decoder network. The basic idea behind this neural network is to encode a time of flight map into a lower dimension representation that can then be decoded into a speed of sound image. Results and Conclusions: We show that limited-angle UST is feasible in simulation using an auto-encoder-like DL framework. There was a mean absolute error of 7.5 ± 8.1 m/s with a maximum absolute error of 139.3 m/s. Future validation on experimental data will further assess their ability in improving limited-angle ultrasound tomography.
Ultrasound is a cost-effective and real-time modality for image-guided intervention for challenging and complication- prone procedure. Conventional ultrasound machines usually require the use of expensive probes and bulky electronics because of the need to acquire and process hundreds of channel data simultaneously. In contrast, a single-element ultrasound system creates a virtual array by scanning an ultrasound element with robotic actuation and tracking instead of using a physical array of ultrasound elements as in conventional ultrasound machine. It not only enables visualization of procedures that otherwise require a custom probe but also dramatically reduces cost and improves the accessibility of image-guided intervention in point-of-care applications. In this work, we present a single-element ultrasound imaging system with a delta configuration actuator modified from a low-cost commercial off-the-shelf 3-D printer, which can serve as both a prototype for clinical application and a research platform. We demonstrated the capability of the system with experiments of spine visualization. We scanned a spine phantom with a needle-based ultrasound. The results indicate the feasibility of compact and economically friendly single-element ultrasound imaging solution for spinal intervention applicable to guiding lumbar puncture and epidural needle insertion.
Thermal ablation is a clinical procedure that aims at destroying pathological tissue minimally invasively through temperature changes. Temperature monitoring during the treatment is instrumental to achieve a precise and successful ablation procedure: ensuring a complete target ablation while preserving as much healthy tissue as possible. Ultrasound (US) is a promising low cost and portable modality, that could provide real-time temperature monitoring. However, the validation of such a technique is challenging. It is usually done with thermometers. They provide temperature measurements with good temporal resolution but only at a few local points. Magnetic Resonance Imaging (MRI) is the gold standard in term of temperature monitoring nowadays. It could also be used for validation of other thermometry techniques with a more accurate spatial resolution, but it requires MR-compatible devices. In this paper, we propose to leverage the use of a novel bipolar radiofrequency (RF) ablation device that provides 10 different ablation shapes to validate an ultrasound-based temperature monitoring method. The monitoring method relies on an external ultrasound element integrated with the bipolar RF ablation probe. This element send through the ablated tissues ultrasound waves that carry time-of-flight information. The ultrasound waves are collected by a clinical diagnostic ultrasound probe and can be related to the changes in temperature due to the ablation since ultrasound propagation velocity in biological tissue changes as temperature increases. We use this ultrasound-based method to monitor temperature during RF ablation. First on simulation data and then on two ex-vivo porcine liver experiments. Those dataset are used to show that we can validate the proposed temperature reconstruction method using the novel conformal radiofrequency ablation device by generating different ablation shapes.
High Intensity Focused Ultrasound (HIFU) is a non-invasive ablative therapy. It is usually performed under MR monitoring, which provides reliable real-time thermal information to ensure a complete tumor ablation while preserving as much healthy tissue as possible. Unfortunately, many patients do not necessarily have access to this expensive and cumbersome cutting-edge technology, which is prohibitive for a widespread use of MRI to guide thermal ablation procedures. Ultrasound (US) is a promising low cost and portable alternative, that allows real-time monitoring and can easily be deployed outside hospitals. However, US-based thermometry alone is not robust enough for the monitoring of in-vivo tissue ablation, and its feasibility is demonstrated only on in-vitro cases for small range of temperatures, up to 50°C. Computational models can simulate the biophysical phenomena and mechanisms which govern this complex thermal therapy. The US wave propagation, the temperature evolution as well as the resulted necrotic lesion can be modeled. A method integrating those sources of information to intra-operative US data would allow to recover the accurate temperature in a wider range. Therefore, US thermometry could be improved and provide an inexpensive yet comprehensive method for intra-procedural monitoring of the ablative process through HIFU. In this paper, we propose to study the rise in temperature induced by high intensity US propagation in biological tissue, which is particularly difficult to simulate due to the complexity of the involved phenomena. The physics-based HIFU model simulates the nonlinear US propagation using a k-space model coupled with the heat propagation in biological tissue using a reaction-diffusion equation. We analyze numerically the model to evaluate its accuracy and related computational cost. Finally, our simulation approach is validated against MR thermometry, the gold-standard monitoring tool used in clinical setting. Three consecutive HIFU ablations were performed on a 2% agar and 2% silicon phantom using the Sonalleve V2 MR-HIFU system (Profound Medical, Toronto, Canada).
Lumbar punctures (LPs) are interventional procedures that are used to collect cerebrospinal fluid. Since the target window is small, physicians have limited success conducting the procedure. The procedure is especially difficult for obese patients due to the increased distance between bone and skin surface. We propose a simple and direct needle insertion platform, enabling image formation by sweeping a needle with a single ultrasound element at the tip. The needle-shaped ultrasound transducer can not only sense the distance between the tip and a potential obstacle, such as bone, but also visually locate the structures by combining transducer location tracking and synthetic aperture focusing. The concept of the system was validated through a simulation that revealed robust image reconstruction under expected errors in tip localization. The initial prototype was built into a 14 G needle and was mounted on a holster equipped with a rotation shaft allowing one degree-of-freedom rotational sweeping and a rotation tracking encoder. We experimentally evaluated the system using a metal-wire phantom mimicking high reflection bone structures and human spinal bone phantom. Images of the phantoms were reconstructed, and the synthetic aperture reconstruction improved the image quality. These results demonstrate the potential of the system to be used as a real-time guidance tool for improving LPs.
KEYWORDS: Photoacoustic spectroscopy, Ferroelectric materials, Sensors, In vivo imaging, Acoustics, Chemical elements, Distance measurement, Image segmentation, Fluoroscopy, Imaging systems
Catheters are commonly used in many procedures and tracking and localizing them is critical to patient safety and surgical success. The standard of care for catheter tracking is with the use of fluoroscopy. Alternatives using conventional tracking technologies such as electromagnetic trackers have been previously explored. This work explores the use of an emerging imaging modality, photoacoustics, as a means for tracking. A piezoelectric (PZT) sensor is placed at the tip of the catheter, allowing it to receive the acoustic signals generated from photoacoustic markers due to the photoacoustic effect. The locations of these photoacoustic markers are determined by a stereo-camera and the received acoustic signals are converted into distances between the PZT element and the photoacoustic markers. The location of the PZT sensor can be uniquely determined following a multilateration process. This work validates this photoacoustic tracking method in phantom, simulation, and in vivo scenarios using metrics including reconstruction precision, relative accuracy, estimated accuracy, and leave-out accuracy. Submillimeter tracking results were achieved in phantom experiments. Simulation studies evaluated various physical parameters relating to the photoacoustic source and the PZT sensor. In vivo results showed feasibility for the eventual deployment of this technology.
KEYWORDS: Chemical elements, Error analysis, High power microwaves, Ultrasonography, Tissues, Liver, Transducers, Temperature metrology, Ultrasound tomography
Thermal monitoring for ablation therapy has high demands for preserving healthy tissues while removing malignant ones completely. Various methods have been investigated. However, exposure to radiation, cost-effectiveness, and inconvenience hinder the use of X-ray or MRI methods. Due to the non-invasiveness and real-time capabilities of ultrasound, it is widely used in intraoperative procedures. Ultrasound thermal monitoring methods have been developed for affordable monitoring in real-time. We propose a new method for thermal monitoring using an ultrasound element. By inserting a Lead-zirconate-titanate (PZT) element to generate the ultrasound signal in the liver tissues, the single travel time of flight is recorded from the PZT element to the ultrasound transducer. We detect the speed of sound change caused by the increase in temperature during ablation therapy. We performed an ex vivo experiment with liver tissues to verify the feasibility of our speed of sound estimation technique. The time of flight information is used in an optimization method to recover the speed of sound maps during the ablation, which are then converted into temperature maps. The result shows that the trend of temperature changes matches with the temperature measured at a single point. The estimation error can be decreased by using a proper curve linking the speed of sound to the temperature. The average error over time was less than 3 degrees Celsius for a bovine liver. The speed of sound estimation using a single PZT element can be used for thermal monitoring.
Lumbar punctures (LPs) are interventional procedures used to collect cerebrospinal fluid (CSF), a bodily fluid needed to
diagnose central nervous system disorders. Most lumbar punctures are performed blindly without imaging guidance.
Because the target window is small, physicians can only accurately palpate the appropriate space about 30% of the time
and perform a successful procedure after an average of three attempts. Although various forms of imaging based
guidance systems have been developed to aid in this procedure, these systems complicate the procedure by including
independent image modalities and requiring image-to-needle registration to guide the needle insertion. Here, we propose
a simple and direct needle insertion platform utilizing a single ultrasound element within the needle through dynamic
sensing and imaging. The needle-shaped ultrasound transducer can not only sense the distance between the tip and a
potential obstacle such as bone, but also visually locate structures by combining transducer location tracking and back
projection based tracked synthetic aperture beam-forming algorithm. The concept of the system was validated through
simulation first, which revealed the tolerance to realistic error. Then, the initial prototype of the single element
transducer was built into a 14G needle, and was mounted on a holster equipped with a rotation tracking encoder. We
experimentally evaluated the system using a metal wire phantom mimicking high reflection bone structures and an actual
spine bone phantom with both the controlled motion and freehand scanning. An ultrasound image corresponding to the
model phantom structure was reconstructed using the beam-forming algorithm, and the resolution was improved
compared to without beam-forming. These results demonstrated the proposed system has the potential to be used as an
ultrasound imaging system for lumbar puncture procedures.
Radiofrequency ablation (RFA) is the most widely used minimally invasive ablative therapy for liver cancer, but it is challenged by a lack of patient-specific monitoring. Inter-patient tissue variability and the presence of blood vessels make the prediction of the RFA difficult. A monitoring tool which can be personalized for a given patient during the intervention would be helpful to achieve a complete tumor ablation. However, the clinicians do not have access to such a tool, which results in incomplete treatment and a large number of recurrences. Computational models can simulate the phenomena and mechanisms governing this therapy. The temperature evolution as well as the resulted ablation can be modeled. When combined together with intraoperative measurements, computational modeling becomes an accurate and powerful tool to gain quantitative understanding and to enable improvements in the ongoing clinical settings. This paper shows how computational models of RFA can be evaluated using intra-operative measurements. First, simulations are used to demonstrate the feasibility of the method, which is then evaluated on two ex vivo datasets. RFA is simulated on a simplified geometry to generate realistic longitudinal temperature maps and the resulted necrosis. Computed temperatures are compared with the temperature evolution recorded using thermometers, and with temperatures monitored by ultrasound (US) in a 2D plane containing the ablation tip. Two ablations are performed on two cadaveric bovine livers, and we achieve error of 2.2 °C on average between the computed and the thermistors temperature and 1.4 °C and 2.7 °C on average between the temperature computed and monitored by US during the ablation at two different time points (t = 240 s and t = 900 s).
An ultrasound image-guided needle tracking systems have been widely used due to their cost-effectiveness and nonionizing
radiation properties. Various surgical navigation systems have been developed by utilizing state-of-the-art
sensor technologies. However, ultrasound transmission beam thickness causes unfair initial evaluation conditions due to
inconsistent placement of the target with respect to the ultrasound probe. This inconsistency also brings high uncertainty
and results in large standard deviations for each measurement when we compare accuracy with and without the
guidance. To resolve this problem, we designed a complete evaluation platform by utilizing our mid-plane detection and
time of flight measurement systems. The evaluating system uses a PZT element target and an ultrasound transmitting
needle. In this paper, we evaluated an optical tracker-based surgical ultrasound-guided navigation system whereby the
optical tracker tracks marker frames attached on the ultrasound probe and the needle. We performed ten needle trials of
guidance experiment with a mid-plane adjustment algorithm and with a B-mode segmentation method. With the midplane
adjustment, the result showed a mean error of 1.62±0.72mm. The mean error increased to 3.58±2.07mm without
the mid-plane adjustment. Our evaluation system can reduce the effect of the beam-thickness problem, and measure
ultrasound image-guided technologies consistently with a minimal standard deviation. Using our novel evaluation
system, ultrasound image-guided technologies can be compared under equal initial conditions. Therefore, the error can
be evaluated more accurately, and the system provides better analysis on the error sources such as ultrasound beam
thickness.
In laparoscopic medical procedures, accurate tracking of interventional tools such as catheters are necessary. Current practice for tracking catheters often involve using fluoroscopy, which is best avoided to minimize radiation dose to the patient and the surgical team. Photoacoustic imaging is an emerging imaging modality that can be used for this purpose and does not currently have a general tool tracking solution. Photoacoustic-based catheter tracking would increase its attractiveness, by providing both an imaging and tracking solution. We present a catheter tracking method based on the photoacoustic effect. Photoacoustic markers are simultaneously observed by a stereo camera as well as a piezoelectric element attached to the tip of a catheter. The signals received by the piezoelectric element can be used to compute its position relative to the photoacoustic markers using multilateration. This combined information can be processed to localize the position of the piezoelectric element with respect to the stereo camera system. We presented the methods to enable this work and demonstrated precisions of 1-3mm and a relative accuracy of less than 4% in four independent locations, which are comparable to conventional systems. In addition, we also showed in another experiment a reconstruction precision up to 0.4mm and an estimated accuracy up to 0.5mm. Future work will include simulations to better evaluate this method and its challenges and the development of concurrent photoacoustic marker projection and its associated methods.
Photoacoustic (PA) imaging has shown its potential for many clinical applications, but current research and usage of PA imaging are constrained by additional hardware costs to collect channel data, as the PA signals are incorrectly processed in existing clinical ultrasound systems. This problem arises from the fact that ultrasound systems beamform the PA signals as echoes from the ultrasound transducer instead of directly from illuminated sources. Consequently, conventional implementations of PA imaging rely on parallel channel acquisition from research platforms, which are not only slow and expensive, but are also mostly not approved by the FDA for clinical use. In previous studies, we have proposed the synthetic-aperture based photoacoustic re-beamformer (SPARE) that uses ultrasound beamformed radio frequency (RF) data as the input, which is readily available in clinical ultrasound scanners. The goal of this work is to implement the SPARE beamformer in a clinical ultrasound system, and to experimentally demonstrate its real-time visualization. Assuming a high pulsed repetition frequency (PRF) laser is used, a PZT-based pseudo PA source transmission was synchronized with the ultrasound line trigger. As a result, the frame-rate increases when limiting the image field-of-view (FOV), with 50 to 20 frames per second achieved for FOVs from 35 mm to 70 mm depth, respectively. Although in reality the maximum PRF of laser firing limits the PA image frame rate, this result indicates that the developed software is capable of displaying PA images with the maximum possible frame-rate for certain laser system without acquiring channel data.
KEYWORDS: Ultrasonography, Optical tracking, Ferroelectric materials, Data modeling, 3D acquisition, Data acquisition, Field programmable gate arrays, Breast, Receivers, Signal detection
Ultrasound-guided needle tracking systems are frequently used in surgical procedures. Various needle tracking technologies have been developed using ultrasound, electromagnetic sensors, and optical sensors. To evaluate these new needle tracking technologies, 3D volume information is often acquired to compute the actual distance from the needle tip to the target object. The image-guidance conditions for comparison are often inconsistent due to the ultrasound beam-thickness. Since 3D volumes are necessary, there is often some time delay between the surgical procedure and the evaluation. These evaluation methods will generally only measure the final needle location because they interrupt the surgical procedure. The main contribution of this work is a new platform for evaluating needle tracking systems in real-time, resolving the problems stated above. We developed new tools to evaluate the precise distance between the needle tip and the target object. A PZT element transmitting unit is designed as needle introducer shape so that it can be inserted in the needle. We have collected time of flight and amplitude information in real-time. We propose two systems to collect ultrasound signals. We demonstrate this platform on an ultrasound DAQ system and a cost-effective FPGA board. The results of a chicken breast experiment show the feasibility of tracking a time series of needle tip distances. We performed validation experiments with a plastisol phantom and have shown that the preliminary data fits a linear regression model with a RMSE of less than 0.6mm. Our platform can be applied to more general needle tracking methods using other forms of guidance.
Controlling the thermal dose during ablation therapy is instrumental to successfully removing the tumor while preserving the surrounding healthy tissue. In the practical scenario, surgeons must be able to determine the ablation completeness in the tumor region. Various methods have been proposed to monitor it, one of which uses ultrasound since it is a common intraoperative imaging modality due to its non-invasive, cost-effective, and convenient natures. In our approach, we propose to use time of flight (ToF) information to estimate speed of sound changes. Accurate speed of sound estimation is crucial because it is directly correlated with temperature change and subsequent determination of ablation completeness. We divide the region of interest in a circular fashion with a variable radius from the ablator tip. We introduce the concept of effective speed of sound in each of the sub-regions. Our active PZT element control system facilitates this unique approach by allowing us to acquire one-way ToF information between the PZT element and each of the ultrasound elements. We performed a simulation and an experiment to verify feasibility of this method. The simulation result showed that we could compute the effective speed of sound within 0.02m/s error in our discrete model. We also perform a sensitivity analysis for this model. Most of the experimental results had less than 1% error. Simulation using a Gaussian continuous model with multiple PZT elements is also demonstrated. We simulate the effect of the element location one the optimization result.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.