We investigate the impact of tunnel barrier thickness on electron spin dynamics in Fe/MgO/GaAs heterostructures using spin-resolved optical pump-probe spectroscopy. Comparison of the Larmor frequency between thick and thin MgO barriers reveals a four-fold variation in exchange coupling strength, and investigation of the inhomogeneous dephasing time, T2*, argues that inhomogeneity in the local effective hyperfine field dominates free-carrier spin relaxation across the entire range of barrier thickness. These results provide additional evidence to support the theory of hyperfine-dominated spin relaxation in GaAs at low temperature and in the presence of an externally applied magnetic field. Further, this work lays the foundation for engineering both the exchange coupling and the free carrier spin dynamics in ferromagnet/semiconductor heterostructures, allowing for the exploration of dissipation and transport in the regime of dynamically-driven spin pumping.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.