The detector panel on a typical CT machine today is made of more than 500 detector boards, nicknamed chiclets. Each chiclet contains a number of detectors (i.e., pixels). In the manufacturing process, the chiclets on the panel need to go through an iterative test, swap, and test (TST) process, till some image quality level is achieved. Currently, this process is largely manual and can take hours to several days to complete. This is inefficient and the results can also be inconsistent. In this work, we investigate techniques that can be used to automate the iterative TST process. Specifically, we develop novel prediction techniques that can be used to simulate the iterative TST process. Our results indicate that deep neural networks produce significantly better results than linear regression in the more difficult prediction scenarios.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.