Organic-inorganic halide perovskite has emerged as promising candidate materials for next-generation energy harvesting and light-emitting applications with the advantages of low processing cost, high defects tolerance, and excellent power conversion efficiency. The instability of these perovskite-based materials under illumination, however, remains a major technical barrier for commercialization. Various techniques have been applied to improve the photo-stability of perovskites. Since the dynamic of photo-generated charged carriers and photo-activated mobile ions affect the stable performance of these applications, a comprehensive understanding of how illumination affect perovskites are of vital importance to improve the performance of perovskite-based optoelectronic applications. In this report, the recent progress of the light soak study on three kinds of perovskites is presented, using depth-resolved, temporal-resolved, and detection-wavelength selective spectroscopic imaging techniques. These works clarify different dominate roles in different perovskite structures and demonstrate the advantages of the imaging spectroscopy in studying the carrier dynamics of perovskite-based materials under light soaking, which is of crucial importance for their applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.