III-Nitride laser diodes (LDs) emitting in the near ultraviolet spectral region can enable various important applications such as high-precision chip-scale atomic clocks. However, III-N LDs emitting near 369nm suffer from material and heterostructure design challenges including stress-induced layer cracking and p-type doping limitations. We will present a detailed study on the influence of the Al mole fraction and thickness on the occurrence of surface cracks of heterostructures using nonplanar growth by metalorganic chemical vapor deposition on macro-patterned GaN/sapphire templates and bulk GaN substrates. Data on the nonplanar growth of full III-N UV LD structures will be presented.
Solar-blind (<280nm) deep-ultraviolet (DUV) avalanche photodetectors (APDs) are of importance in various applications such as quantum communication, biomedical, defense, and non-line-of-sight (NLOS) communication. This makes the detectors from AlxGa1-xN materials attractive for such applications owing to their wide direct-bandgap characteristics. In this work, top-illuminated DUV Al0.6Ga0.4N p-i-n APD structures were designed, grown by metalorganic chemical vapor deposition on bulk AlN substrates, and fabricated. The devices showed distinctive avalanche breakdown behavior, with breakdown voltages of -150V, and low-leakage current density of <10-8A/cm2. The peak spectral response is 141mA/W at the wavelength of 245nm under 0V.
Front-illuminated p-i-n GaN-based ultraviolet (UV) avalanche photodiodes (APDs) were grown by metalorganic chemical vapor deposition (MOCVD) on 25 mm dia. bulk Ammono® n-GaN substrate having a low etch pit density (EPD) less than 5 × 104 [cm-2] and processed into 6×6 APD arrays. The devices employed N-ion implantation to achieve sidewall passivation. Evaluation of these 6×6 arrays will help to confirm the uniformity of the epitaxial materials and device processing. The maximum avalanche gain reached ~ 3×105 at the breakdown (current limited). The dark current density was 10-9 A/cm2 at reverse bias up to -20 V and the APDs exhibited a reverse breakdown voltage of 81 ± 1 V for all 36 devices without any leaky devices, confirming a high uniformity of the growth and fabrication processes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.