Optical fibers have long been the backbone of modern communication system. One way of extending the capability of optical fibers is to thin down the core sizes as microfiber which facilitates light-matter interaction through evanescent light. Among different microfiber based structure, the microfiber knot resonator (MKR) is a resonant structure which finds applications in lasing, filtering and optical switching [1-2]. Particularly, when the MKR structure is combined with functional two-dimensional materials, a large panel of devices can be achieved via the investigation of variations in resonance properties.
Here, a layered metal dichalcogenide semiconductor tin disulfide (SnS2), characterized with high intrinsic electron mobility and strong absorption in the visible light regime [3], is chosen to be coated onto MKR. The all-optical control of light functionality is demonstrated in MKR with SnS2 structure where the signal light power is controlled by the external violet pump power via the absorption property of SnS2. The device fabrication, characterization and obtained experimental results will be presented in the talk.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.