SignificanceHolographic display technology is a promising area of research that can lead to significant advancements in cancer surgery. We present the benefits of combining bioinspired multispectral imaging technology with holographic goggles for fluorescence-guided cancer surgery. Through a series of experiments with 43D-printed phantoms, small animal models of cancer, and surgeries on canine patients with head and neck cancer, we showcase the advantages of this holistic approach.AimThe aim of our study is to demonstrate the feasibility and potential benefits of utilizing holographic display for fluorescence-guided surgery through a series of experiments involving 3D-printed phantoms and canine patients with head and neck cancer.ApproachWe explore the integration of a bioinspired camera with a mixed reality headset to project fluorescent images as holograms onto a see-through display, and we demonstrate the potential benefits of this technology through benchtop and in vivo animal studies.ResultsOur complete imaging and holographic display system showcased improved delineation of fluorescent targets in phantoms compared with the 2D monitor display approach and easy integration into the veterinarian surgical workflow.ConclusionsBased on our findings, it is evident that our comprehensive approach, which combines a bioinspired multispectral imaging sensor with holographic goggles, holds promise in enhancing the presentation of fluorescent information to surgeons during intraoperative scenarios while minimizing disruptions.
SignificanceFluorescently guided minimally invasive surgery is improving patient outcomes and disease-free survival, but biomarker variability hinders complete tumor resection with single molecular probes. To overcome this, we developed a bioinspired endoscopic system that images multiple tumor-targeted probes, quantifies volumetric ratios in cancer models, and detects tumors in ex vivo samples.AimWe present a new rigid endoscopic imaging system (EIS) that can capture color images while simultaneously resolving two near-infrared (NIR) probes.ApproachOur optimized EIS integrates a hexa-chromatic image sensor, a rigid endoscope optimized for NIR-color imaging, and a custom illumination fiber bundle.ResultsOur optimized EIS achieves a 60% improvement in NIR spatial resolution when compared to a leading FDA-approved endoscope. Ratio-metric imaging of two tumor-targeted probes is demonstrated in vials and animal models of breast cancer. Clinical data gathered from fluorescently tagged lung cancer samples on the operating room’s back table demonstrate a high tumor-to-background ratio and consistency with the vial experiments.ConclusionsWe investigate key engineering breakthroughs for the single-chip endoscopic system, which can capture and distinguish numerous tumor-targeting fluorophores. As the molecular imaging field shifts toward a multi-tumor targeted probe methodology, our imaging instrument can aid in assessing these concepts during surgical procedures.
SignificanceNear-infrared fluorescence image-guided surgery is often thought of as a spectral imaging problem where the channel count is the critical parameter, but it should also be thought of as a multiscale imaging problem where the field of view and spatial resolution are similarly important.AimConventional imaging systems based on division-of-focal-plane architectures suffer from a strict relationship between the channel count on one hand and the field of view and spatial resolution on the other, but bioinspired imaging systems that combine stacked photodiode image sensors and long-pass/short-pass filter arrays offer a weaker tradeoff.ApproachIn this paper, we explore how the relevant changes to the image sensor and associated image processing routines affect image fidelity during image-guided surgeries for tumor removal in an animal model of breast cancer and nodal mapping in women with breast cancer.ResultsWe demonstrate that a transition from a conventional imaging system to a bioinspired one, along with optimization of the image processing routines, yields improvements in multiple measures of spectral and textural rendition relevant to surgical decision-making.ConclusionsThese results call for a critical examination of the devices and algorithms that underpin image-guided surgery to ensure that surgeons receive high-quality guidance and patients receive high-quality outcomes as these technologies enter clinical practice.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.