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INTRODUCTION 

 
Ingenio/SEOSAT is a multi-spectral high-resolution optical satellite for Earth remote sensing, designed to 

provide imagery to different Spanish civil, institutional and governmental users, and potentially to other 

European users in the frame of GMES and GEOSS. In this communication is presented the developed shimming 

procedure for the light-weighted primary mirror (M1) of the Ingenio/SEOSAT telescope, together with obtained 

results. The shimming operation has been devised to accurately cancel the residual deformation on the mirror 

surface caused by its integration on the telescope structure. This deformation is generally small but not 

necessarily negligible; even if all elements are integrated using proper isostatic mounts. 

 

The devised shimming method uses as input a high-resolution deformation map of the M1 mirror surface, 

measured after mirror integration in the telescope structure. This map is obtained by a wavefront error 

measurement of the light reflected by the quasi-parabolic M1 mirror, placed on a null interferometric set-up. In 

the project, these interferometric measurements have been performed by REOSC-SAGEM, manufacturer of 

SEOSAT mirrors. The first 36 terms of the (fringe basis) Zernike decomposition of the measured surface 

deformation map have been computed and used in the shimming procedure. 

 

The measured surface deformation maps can be modified by shimming the mirror support mounts, which 

induces its own deformation patterns. To quantify these contributions, a highly detailed finite element model 

(FEM) of the mirror and its interface mounting devices (IMDs) has been developed to characterize the mirror 

surface deformation map caused by unit displacements on each foot of the mirror support mounts. A Zernike 

decomposition of the resulting maps has then been performed, to enable a quantitative comparison to the results 

of the interferometric measurements. For the IMD configuration on Ingenio/SEOSAT M1 mirror, composed of 

three identical mounts located at 120 degrees around the mirror perimeter, the leading deformation pattern 

caused by mounting loads is primary astigmatism, with significantly smaller contributions to patterns such as 

primary trefoil and defocus. 

 

The FEM analysis described enables to set up a set of linear equations relating IMD displacements to induced 

surface deformation Zernike coefficients. Solving these equations for the measured Zernike coefficients, one 

can get the set of IMD displacements that best reproduces the measured deformation map, in a least mean 

squared error sense. Applying these displacements with reverse sign using adequate shims, the mirror 

deformation can thus be optimally cancelled. 

 

The use of this procedure on Ingenio/SEOSAT has enabled to reduce the initial residual astigmatism of the 

integrated primary mirror on a seventy five percent, with resulting performance even marginally better than that 

obtained at mirror manufacturing. The effect of shimming on telescope RMS wavefront error and modulation 

transfer function has been simulated, confirming the success of the approach. The presented approach has 

general applicability to the integration of a mirror of mid to large size, especially if its surface figure error has a 

critical impact on the overall image quality. 

 

The devised procedure and obtained results are described in the following sections, preceded by a brief 

overview of the Ingenio/SEOSAT mission and payload. 

 

 

SEOSAT MISSION OVERVIEW 

 

Ingenio/SEOSAT [1-4] is a multi-spectral high-resolution optical satellite for Earth remote sensing, designed to 

provide imagery to different Spanish civil, institutional and governmental users, and potentially to other 

European users in the frame of GMES and GEOSS. Ingenio/SEOSAT is a Low Earth Orbiting mission. It 

features a Primary Payload (PP) with one 2.5 meter resolution panchromatic channel and four 10 meter 
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resolution visible/near infrared spectral channels. The PP swath close to 55 km ensures a frequent revisit period, 

and offers quick accessibility to any point on Earth in emergency situations. 

Ingenio/SEOSAT is the flagship mission for the Spanish Space Plan elaborated by CDTI in 2006, and part of 

the Spanish Earth Observation Satellite System. This system comprises two spacecrafts with imagery 

capabilities in the optical and radar ranges, Ingenio/SEOSAT and Paz/SEOSAR, respectively. Following 

approval by ESA Council, an agreement was signed between the CDTI and the European Space Agency (ESA) 

concerning the technical and managerial assistance that ESA will provide to the Implementation phase of the 

Ingenio /SEOSAT Space and Ground Segment activities. 

Ingenio/SEOSAT is designed for application in areas such as land use mapping, cartography, emergency 

support, water resources management, agriculture monitoring, environment, etc. The primary users, composed 

of several Spanish Governmental Organizations and Scientific Institutions, have defined the requirements of the 

mission, encompassing state-of-the-art image quality and radiometric performances. In order to fulfill these 

requirements, it has been defined a high performance instrument, facing several engineering challenges in both 

design and manufacturing terms. 

 

 
       Fig. 1. Artist’s view of the Ingenio/SEOSAT satellite 

 

 

SEOSAT PRIMARY PAYLOAD  

 

A 3D view of the payload is presented in fig. 2. The payload is equipped with two identical cameras, each 

covering half of the requested image swath. Following the light path, each camera is composed of the following 

elements: 

 An optical telescope based on an all-reflective Korsch concept.  

 A focal plane assembly composed of two panchromatic (PAN) plus two multispectral (MS) detectors, 

co-planarly located. Detectors for both channels are of CCD type. The detectors used for the PAN 

channel are based on Time Delay and Integration (TDI) technology to increase the number of 

generated photo-electrons, with the corresponding improvement in signal-to-noise ratio. A 4-line CCD 

detector has been used for the MS channel, with lines devoted to sense blue, green, red and NIR 

spectral bands. Both PAN and MS detectors are mounted on its proper sub-assembly, which includes 

the filters defining the spectral bands and the corresponding proximity electronics. 

 The electronics modules, including the electronic video units, the video power supply and the interface 

and control electronics. 
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Fig. 2. 3D view of the Ingenio/SEOSAT primary payload 

 

The optical layout of the designed Korsch-type telescope is displayed in fig. 3. The system is composed of three 

conical on-axis mirrors (M1-M3) plus a plane folding mirror (FM) to direct the image to the focal plane (FP), in 

the upper part of the drawing. This design presents a high mechanical compactness, and maintains a relative 

ease of both manufacturing and alignment.  

The designed system is all-reflective but for filters and windows located at the focal plane, and hence is 

essentially free of chromatic aberrations. This is particularly convenient given the extended spectral range of the 

instrument, spanning from blue to near infrared.  

The larger mirrors in the design, M1 and M3, have been light-weighted to reduce the telescope mass. This 

contributes to the necessity of controlling the state of surface deformation during integration of M1, specially, 

given its large effect on the telescope overall wavefront error. 

 
Fig. 3. Telescope optical design layout. Incoming light (from the left in the drawing) is focused on 

the focal plane (FP) after reflections on the primary (M1), secondary (M2), tertiary (M3) and plane 

folding (FM) mirrors 

 

 
PRIMARY MIRROR FEM-ASSISTED SHIMMING MODEL 

 

Ingenio/SEOSAT primary mirror (M1) is manufactured in Zerodur, a SCHOTT glass-ceramic well known for 

its extremely low thermal expansion coefficient. In fig. 4 is depicted a 3D model of the mirror, where it is 

apparent the light-weighting design in the mirror back, and the iso-static three-mount system at 120º. The IMDs 

are manufactured using a combination of Invar and Titanium. Invar (displayed in green in the figure) is used in 

the area that is glued to the M1 body, to minimize differential thermal expansion stresses induced in the mirror. Proc. of SPIE Vol. 10562  105625Q-4
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The structural part of the IMD (displayed in cyan) is manufactured using Titanium, with better performances 

due to a better rate elasticity modulus vs mass and larger micro-yielding strength. 

 
Fig. 4. Primary mirror mechanical model (courtesy of REOSC-SAGEM) 

 

These IMDs provide a direct mechanical interface to a plane surface on the telescope structure. Each mounting 

device has two independent rectangular contact surfaces, which could be shimmed independently. Shimming 

both surfaces by the same amount induces a pure translation of the mounting device. Contrariwise, shimming 

both surfaces by opposite amounts induces mainly a rotation. In fig. 5 are presented the computed mirror surface 

deformation maps for unitary translations (first row) and rotations (second row) of each of the three IMDs. A 

unitary translation is defined here as corresponding to the displacement of both IMD contact surfaces by one 

micron in the same direction. In the same way, a unitary rotation corresponds to the relative displacement of 

both IMD contact surfaces by one micron. IMDs have been labelled as +X (first column), +Y (second column) 

and –Y (third column) in accordance to the IMD location with respect to the mirror reference frame (see fig. 4, 

right panel). 

 

 
Fig. 5. Computed M1 surface deformation maps for unitary translations and rotations on each M1 IMDs 
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Fig. 6. Zernike decomposition of the unitary mirror surface deformation maps 

 

Assuming a linear behavior of the mirror, the knowledge of the surface deformation due to unitary shims, allows 

predicting the deformation due to any shim combination by a simple arithmetic operation. In the same way, it is 

easy to evaluate the shim combination needed to obtain a determined surface shape. 

 

In fig. 6 are displayed the first 36 coefficients of the Zernike decomposition of the computed surface 

deformation maps, piston and tilts excluded. As it is apparent, the leading deformation pattern induced by 

shimming in this geometry is primary astigmatism, described by coefficients Z5 (horizontal-vertical axis) and Z6 

(axis at ±45º). Primary trefoil, particularly in the y-axis (Z11) and defocus (Z4) are also present, in significantly 

smaller magnitudes. Very minor contributions to other patterns, such as primary tetrafoil (Z17-Z18) and 

secondary astigmatism (Z12-Z13), have also been revealed by the study. The leading role of astigmatism is also 

apparent in the deformation maps depicted in fig.5, which show in all cases an astigmatic-like pattern. 

 

Hence, we can conclude that the basic deformation pattern induced by IMD shimming on this mirror/IMD 

geometry is primary astigmatism, regardless of which IMD it is acted upon, or whether it has been subjected to 

translation or rotation. According to this, the effective number of degrees of freedom of the shimming operation 

is reduced from six to two, corresponding to the magnitude and orientation of the astigmatism pattern. These 

two degrees of freedom could be obtained by shimming in any two IMDs, applying translation or rotation 

displacements, as long as both unitary deformation maps are not oriented in the same orientation, or in 

orientations multiple of 90º. 

 

Shimming resulting in IMD rotations has been discarded, as the FEM analysis showed it to create higher 

internal stresses than that consisting of IMD translations, for the same induced mirror surface deformation map. 

Considering only translations, three IMD pairs are possible: (+X, +Y), (+X, -Y) and (+Y, -Y). Use of any of the 

first two combinations is feasible, whereas elements of the third pair have deformation patterns roughly oriented 

at 90º with respect to each other. Use of this last pair will require considerable larger shims that the first two to 

generate horizontal-vertical astigmatism patterns, and thus its use has been discarded.  The first two pairs are 

basically equivalent. The described implementation has used pair (+X, +Y). 

 

 

M1 SHIMMING RESULTS 

 
In the following paragraphs are presented the shimming results for the primary mirror on the payload’s first 

telescope, including mirror surface deformation maps before and after shimming, determined shimming values 

and predicted effect of shimming on the mirror surface error and telescope wavefront error. 

 

M1 initial surface deformation map 

In fig. 6 is displayed the measured surface deformation map (left panel), with its low order map (mid panel) and 

high frequency residual (right panel). The low order map has been computed as the sum of the first 36 terms in 

the fringe Zernike decomposition. The high-frequency residual is the remainder obtained from subtracting the 

low order map from the measured map. In table I are presented the numerical values of coefficients Z5 and Z6 in 

the Zernike (fringe) decomposition, corresponding to horizontal-vertical and diagonal primary astigmatism, 

respectively. 
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Table I. Primary astigmatism Zernike coefficients before shimming 

#Zern Term Value 

Z5 Primary astigmatism (axis at 0º, -90º) 9.4 nm 

Z6 Primary astigmatism (axis at +45º, -45º) 23.8 nm 

 

The relatively large value of diagonal astigmatism causes the appearance of a diagonal pattern in the surface 

deformation map, clearly visible in both the total and low order maps. This degradation could be significantly 

reduced by application of the described shimming procedure. 

 

 
Fig. 7. M1 surface deformation map, before application of the shimming procedure 

 

Shim thickness computation 

Cancellation of the measured (low order) surface deformation map requires computing the solution to the 

following set of linear equations: 

 

 𝛼𝑖𝑆𝑥 + 𝛽𝑖𝑆𝑦 = −𝑍𝑖 ,      𝑖 = 5 ⋯ 36, (1) 

 

with one equation per computed low order Zernike, up to Z36. Piston, tilt and focus (Z1-4) are excluded from the 

analysis. Sx and Sy represent here the thickness of the shims to be applied on IMDs +X and +Y, respectively. 

Coefficients αi and βi, linking shim thickness to induced surface deformation Zernike coefficients have been 

obtained directly from the performed FEM analysis, and are represented graphically in fig. 6. Finally, Zi stands 

for the i measured Zernike coefficient, in the fringe basis.  The sign of the measurement is inverted, to look for 

shimming solutions that cancel the observed deformation pattern. 

 

This system of equations is highly overdetermined, with 32 equations for two unknowns. The least mean 

squared error solution can be determined by means of the Moore-Penrose pseudoinverse, which can be readily 

computed using singular value decomposition (SVD). In practical terms, the shimming solution will be basically 

determined by the cancellation of the astigmatism coefficients, which are the ones most largely affected by 

shimming (see fig. 6).  

 

Application of this procedure have resulted in the shim thickness values presented in table II, after rounding to 

the nearest integer multiple of 5 µm. Shimming with these values was applied to M1, with the result described 

in the following paragraphs. 

 

Table II. Shim thickness applied in IMD+X and IMD+Y 

IMD Shim thickness 

+X 5 µm 

+Y 55 µm 
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M1 surface deformation map after shimming 

As for the case before shimming, in fig. 8 is displayed the total surface deformation map (left panel), low order 

map (mid panel) and high frequency residual. In table II are presented the numerical values of coefficients Z5 

and Z6 in the resulting Zernike decomposition. 

 

Table III. Primary astigmatism Zernike coefficients after shimming 

#Zern Term Value 

Z5 Primary astigmatism (axis at 0º, -90º) 1.9 nm 

Z6 Primary astigmatism (axis at +45º, -45º) -6.2 nm 

 

The quadratic sum of these coefficients is √1.92 + (−6.2)2 = 6.5 𝑛𝑚, a mere 25% of the corresponding value 

before shimming. In the low order map of figure 6, it can be seen that the diagonal pattern has been largely 

diminished, also experiencing a rotation of 90º (linked to the change of sign in Z6). 

 

 
Figure 8. M1 surface deformation map, after shimming 

 

Telescope wavefront error and modulation transfer function prediction 

 

In table IV is presented the predicted effect of the performed shimming operation on both the telescope root 

mean squared wavefront error (WFE RMS) and on the polychromatic MTF at Nyquist frequency, for six fields 

(P1-P6) in the panchromatic channel of the instrument. Computation of these values have been performed using 

CODE V optical design program on SEOSAT’s nominal optical design, with all mirrors equipped with their 

measured surface deformation maps. 

 

According to this data, application of the described M1 shimming procedure results in a general improvement in 

the optical quality of the telescope, quantified both in terms of WFE RMS and MTF in X/Y directions. The 

expected peak WFE RMS decrease is close to 9 nm. For MTF, maximum increases of almost 14% are predicted. 

Both these improvements are considered to be highly relevant in terms of resulting optical performance, 

confirming the success of the proposed approach. 

 

Table IV. Predicted telescope image performance parameters 

 Results before shimming 

 P1 P2 P3 P4 P5 P6 

WFE RMS (nm) 38.5 37.8 32.8 34.0 32.1 37.8 

MTF X 0.252 0.261 0.291 0.281 0.290 0.276 

MTF Y  0.240 0.250 0.271 0.269 0.265 0.247 

       

 Results after shimming 

 P1 P2 P3 P4 P5 P6 

WFE RMS (nm) 31.8 29.1 24.2 25.4 27.1 34.7 

MTF X 0.284 0.297 0.311 0.304 0.303 0.282 

MTF Y  0.27 0.282 0.292 0.292 0.279 0.26 
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CONCLUSIONS 
 
A FEM based shimming method developed in the framework of SEOSAT project has been presented. The 

presented approach has general applicability to the integration of a mirror of mid to large size, especially if its 

surface figure error has a critical impact on the overall image quality. 

 

Application of this procedure on Ingenio/SEOSAT has enabled to reduce the initial residual astigmatism of the 

integrated primary mirror on a seventy five percent, with resulting performance even marginally better than that 

obtained at mirror manufacturing. The effect of shimming on telescope RMS wavefront error and modulation 

transfer function has been simulated, confirming the success of the approach.  
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