

Smart multispectral image acquisition and multi-channel image
processing with programmable System on Chip devices

Mathias Schellhorna, Richard Fütterera, Gunther Notnia

a Ilmenau University of Technology, Faculty of Mechanical Engineering, Department of Quality
Assurance and Industrial Image Processing, P.O. Box 10 05 65, 98684 Ilmenau, Germany.

ABSTRACT

Through the acquisition and processing of several spectral channels within the multispectral data, the demands on signal
processing and data handling increase enormously. With the help of intelligent signal pre-processing on programmable
system on chip platforms (pSoC), captured data can be corrected and evaluated directly after image acquisition. PSoC
combine the advantages of freely programmable logic (FPGA) and sequential processor systems (ARM technology) and
significantly increase the integration density of embedded image processing systems. However, the design effort for
these systems is increasing strongly, so that hardware/software co-design approaches must be used for implementation.
The paper covers the design methodology, the implementation and the evaluation of multichannel acquisition systems
using multispectral image sensors as an example.

Keywords: programmable system on chip, spectral imaging

1. INTRODUCTION

The research results presented here are based on the research topics "Hardware / Software Co-design methods for
multidimensional image processing and image stack processing on system on chip platforms" of the InnoProfile project
"QUALIMESS Next Generation" (03IPT709X). As research milestones, two smart spectral imagers with embedded pre-
processing on the integrated pSoC were developed.

For the first demonstrator, the previously existing research setup of a filter wheel camera developed in the previous
project QualiMess was revised and extended with a programmable SoC module. The aim was to further increase the
precision of the spectral image while minimizing the latency between image acquisition and spectral image output.
Additional hardware resources are used to enable embedded pre-processing of the spectral data. The use case is a
Principal Component Analysis (PCA). The PCA provides uncorrelated linear combinations of the observed wavelengths
and is an important pre-processing step for feature extraction and data reduction of multi- and hyperspectral images.
These results were evaluated in a second demonstrator using the example of a spectral one-shot sensor with a different
processing sequence and reduced spectral dimension.

This paper provides an overview of the entire project duration. For a more detailed look at the individually addressed
results, reference is made to [1], [2], [3] and [4].

2. PRORGAMMABLE SYSTEM ON CHIP DEVICES FOR MULTIDIMENSIONAL
IMAGE PROCESSING

Heterogeneous FPGA SoC or programmable SoC have been available from various hardware manufacturers since 2011.
These devices combine one or more hardware-based processors (hard IP core) with a freely programmable FPGA
structure closely linked on a die. The processor system (PS) and programmable logic (PL) are tightly linked by special
control buses and dedicated high-speed ports for the fast exchange of large amounts of data. The spectrum of these
components is extended by high-speed ports for the implementation of powerful interfaces as well as additional
dedicated hardware components such as memory controllers, clock managers, DSP elements and floating point
computing units.

The following is a rough summary of the advantages of using heterogeneous FPGA SoC:

 Reduced space requirements on the Printed Circuit Board (PCB) by concatenated hardware in a single chip

Photonics and Education in Measurement Science 2019, edited by Maik Rosenberger,
Paul-Gerald Dittrich, Bernhard Zagar, Proc. of SPIE Vol. 11144, 1114404
© 2019 SPIE · CCC code: 0277-786X/19/$21 · doi: 10.1117/12.2530820

Proc. of SPIE Vol. 11144 1114404-1

 Parallel hardware acceleration of embedded algorithms
 Energy efficiency compared to pc-based processing
 Broad support of different I/O standards
 Flexible use of the same hardware by using different hardware initializations or reconfiguration at runtime
 Extended hardware lifecycles due to long industrial availability of the components and the possibility of

hardware updates

These advantages arise obviously from new challenges.

 Implementation requires profound hardware and software knowledge.
 Mastery of different implementation tools is necessary
 High integration density requires a precise timing and functional analysis
 Partitioning of functionalities implemented in hardware and software is essential for the performance of the

overall system.

The last point in particular is a decisive factor for a successful implementation, partitioning takes effect early in the
development process and influences the entire implementation.

2.1 Selection of a PSoC device for the implementation of embeded multidimensional image processing

The investigations within QualiMess next Generation included performance analysis and evaluation of the available
programmable SoC. The aim was to create a systematic of different pSoC components and to identify essential
comparison features with special consideration of the application of multidimensional image processing algorithms. For
this purpose, market research on the available pSoC systems and a comprehensive hardware evaluation were carried out
in 2015.

The tight memory link between PS and PL was defined as an important criterion because access to the shared data
(image data) is often the bottleneck for optimal processing. Altera's pSoC (now Intel) and Xilinx offer the necessary
connections combined with powerful PS computing power. Microsemis SoCs, typically in the lower to mid-range range,
provide only rudimentary support that is not sufficient for more complex image processing.

As a result, the fully programmable SoC family Xilinx Zynq®-7000 with the Zynq-7020 as the target device was
selected. The Zynq family combines an ARM® dual-core Cortex A9 core, programmable logic and essential peripheral
functions. It is supported by a large number of IP modules and a tool infrastructure, which also makes it possible to
realize very demanding tasks. Versatile prefabricated IP modules (Intellectual Property) and a tool infrastructure, which
also enables the implementation of demanding tasks, support the development process. [5]

2.2 Development of a pSoC hardware platform as a versatile research setup

Based on the pSoC selection, a modular target platform was developed. The hardware should allow the connection of
one or more sensors of different types (CCD, CMOS, variable bit depths, variable spectral sensitivities). For embedded
image processing, an external memory had to be available that supports the required bandwidths for the various
applications. In addition to the corresponding logic and computing power in PL and PS, other peripheral devices such as
lighting or motion devices had to be connected. For this purpose, appropriate standard interfaces had to be available or
be able to be connected via freely programmable IOs. After processing in the system, the images or data should be able
to be transferred to display devices or PCs via appropriate image processing interfaces.

In order to accelerate the development process, industrial pSoC modules were used. These modules already deliver
critical power supplies as well as impedance-controlled memory connections with correspondingly large memory
modules. The IOs can be connected via commercially available connectors. The modules are therefore used together with
a baseboard that provides additional peripherals and interfaces. Modules from Trenz GmbH and later from Enclustra
were used.

Based on the catalogue of requirements, a block diagram was designed for the implementation of the baseboard. Based
on this, a hardware board was created in several iteration steps, which forms the basis for the hardware demonstrators to
be created in the project.

Proc. of SPIE Vol. 11144 1114404-2

3. HARDWARE-SOFTWARE-CO-DESIGN OF MULTIDIMENSIONAL ALGORITHMS
ON PROGRAMMABLE SYSTEM ON CHIP

The use of pSoC significantly increases the integration density of embedded image processing systems. The design effort
for these systems is markedly increased, which makes a hardware-software co-design necessary. According to the system
specification, the system is divided into hardware, software and interfaces. In order to avoid arbitrary partitioning,
experience with the algorithms to be implemented is required. One focus of the investigations in the project was the
classification of image processing algorithms for multidimensional and multi-channel image processing.

3.1 Systematics for separating algorithms that can be implemented by software or hardware

In the previous QualiMess project a general systematic for the separation of host-based and camera-based functions was
developed. Since the system is based on pure FPGA structures in the camera system, it must be adapted to the current
pSoCs. With pSoCs, the PL can be more closely linked to sequential processing in PS (Table 1), so that algorithms can
be partly subdivided into PL and partly into PS and processed (co-processing). The bottleneck is the interface between
PS and PL. Algorithms must therefore be critically analyzed for parallelizable components.

Table 1. Comparative overview between the processing architectures in PL and PS

 Programmable logic (PS) Processing system (PS)

Processing massive parallel sequential

Processing speed Extremely fast, different clock domains
possible, real-time processing

fixed processor clock, many dependencies,
interrupt controls or prioritizations lead to
non-deterministic behavior

Limitations Degree of parallelization, bit depths and
local memory influence resource
utilization

Essential limitation only by program
memory, processing stack and heap

Programming Hardware description languages, Register
Transfer Level (RTL), graphical and
(depending on manufacturer) high-level
languages

Standard high languages like system C,
C++, C#, ...

On this basis, we divide the image processing algorithms into four categories:

 Data-independent algorithms are characterized by the independent calculation of each data element (usually
pixels). This includes point operators such as image transformations using the lookup table (LUT). But also the
combination of several images to one output image via a linear linkage of the respective pixels in the input
images. These algorithms are therefore ideally suited for calculation with hardware processors within the PL
and can be easily parallelized. Limitations result from the memory bandwidth and the data transfer effort.

 Data linking algorithms include algorithms that require neighboring elements to be included in the calculation
of data elements. Local buffering of one or more image lines is required. Nevertheless, they have a high
parallelization potential, but must be optimized with regard to memory latency and multiple data usage.

 Data-exchanging algorithms are algorithms that require additional complex calculations (e.g. integral
equations) that cannot be mapped in hardware. By an interaction of parallelizable hardware coprocessors and
sequential calculation, however, noticeable calculation accelerations can be achieved.

 Data-dependent algorithms are characterized by extensive data dependencies and communication. Therefore,
they are poorly suited for porting to the PL, since even enormous programming and optimization efforts can
only achieve modest accelerations. An example of this would be error diffusion.

Proc. of SPIE Vol. 11144 1114404-3

3.2 Assessment of the available development environments

For the design entry into the FPGA development process of the PL different approaches have been established, which
were examined during the project duration. This includes the classical hardware description languages, high-level
synthesis development environment (HLS) and graphical development environments.

Xilinx provides the Vivado development environment for the Zynq-7000 pSoc used in the project. This provides the
environment in which the hardware platform is created. Xilinx uses an IP-Core based (Intellectual Property) approach. IP
cores are self-contained function modules that can be integrated several times into the design. The cores are already fully
specified and tested and can usually be further specified for use via configuration parameters. This approach saves
development time and programming work, since large parts of a design are already available in part drafts that can be
used in different systems (design re-use). In this way, projects can be granulated into individual function blocks that are
reusable and easy to integrate. The IP catalogue provided by the manufacturer can also be extended with 3rd party cores,
i.e. purchased IP cores, as well as self-written cores.

The design entry for most IP-Cores is usually done via hardware description languages (HDL) like VHDL or Verilog.
HDL are used to describe the structure and behavior of digital circuits. In addition, syntax and semantics of HDL include
notations to express time sequences and instantiations required in the hardware module.

Another option is high-level synthesis (HLS), for which Vivado includes the Eclipse-based Vivado HLS development
environment. Vivado HLS converts algorithms written in high-level languages (C++, System C) to hardware
specifications (e.g. Verilog and VHDL) of the Register Transfer Layer (RTL). The development environment analyzes
the code to identify dependencies and parallelism and to map them to hardware.

However, since the input description is abstracted, the hardware optimization is passed from the designer to the HLS
compiler, which can lead to inefficient implementations. The parallelization can usually be influenced by providing
'hints' (e.g. Pragma statements in C-based HLS) to the compiler. These hints usually also require corresponding design
competence at the hardware level.

In the project, the IP-based design process of Xilinx was taken up and an interface concept for all IP-cores for uniform
integration and interchangeability was defined. Vivado HLS is used for the creation of IP cores for data-independent,
data-linking and partly also data-exchanging algorithms. For time-critical IP cores (e.g. special external interfaces) the IP
development is carried out directly in VHDL.

3.3 Design of an framework for the implementation of multidimensional algorithms

As a basis for the following implementations, the design and implementation of a basic infrastructure had to be realized.
Infrastructure in this context represents a basic framework for pSoC systems, a architecture for multidimensional image
processing applications. This required the implementation of image acquisition and control of image sensors,
intermediate storage of image stacks, variable image processing pipelines and output via standard interfaces.

For the development of the architecture different approaches were examined. Typical image processing pipelines in
FPGA devices work according to the well-known EVA principle (input processing output). The data is sequentially
routed through the individual processing units (or IP cores) and can thus be processed in parallel.

As explained in the introduction, pSoC exchang data between PL and PS via external RAM. In the case of the Xilinx
pSoC used, this is done by using prefabricated DMA (Direct Memory Access) or especially in the image processing area
via VDMA (Video Direct Memory Access) IP cores. These allow the storage or reading of sequential image data streams
into external RAM memories with a management of up to 32 image memory addresses.

In the FPGA part of the pSoC various manufacturers use the AXI bus (Advanced Exensible Interface) as standard for the
connection of hardware components. The AXI4 was specially developed for the exchange between digital subsystems
and ARM processors and is a widely used on-chip interface standard. The standard defines:

 AXI4 Full for the communication of components via address information. The high-speed interface is specially
designed for memory access with burst widths of 256 data sets at 32 or 64 bits.

 AXI4 Lite as a communication and control channel that requires individual addressing for each data packet.

 AXI4 Stream as a point-to-point connection between components via a 4-phase handshake without address
information. [6], [7]

Proc. of SPIE Vol. 11144 1114404-4

The VDMA IP-Core is equipped with AXI4 stream ports which can be integrated into the image processing chain. The
connection to the external memory is established via AXI4 full and the hardware-cast Dynamic Memory Controller.
Control is via AXI4 Lite and must be triggered via software routines in the ARM.

With the help of these IP cores and external memory, different processing chains can be realized. A simple image buffer
with variable image output can be realized by integrating the VDMA core. With the same resources in different
configurations, the processing chain can be converted into a ring structure that allows the same chain to be run through
several times starting from the image memory. This allows variable pipeline processing, but at the expense of
performance and overall latency. The use of display interfaces such as HDMI, which require fixed frame rates, is also
critical in this context.

Therefore a memory decoupling of the actual image processing from the image input output was chosen as approach for
the framework. For this purpose, the image processing pipeline is separated and connected to the external memory via
VDMAs. The image input / output path contains only basic image restoration and error correction algorithms after image
acquisition. The images are then transferred to fixed memory areas in the RAM using the pixel clock of the sensor /
camera. At the same time, images are read from an output area and transferred to the host via the interface. At the same
time, the system has a scalable number of processing pipelines that buffer their results in RAM. By using AXI4 Stream
Interconnect IPs in switch operation, the processing chain and the processing of individual IP cores can also be
controlled. The rough overview of the architecture is shown in Figure 1 as a block diagram.

Figure 1. Simplified schematic representation of the framework underlying the implementation strategy. [3]

The framework was implemented as a block design with the tools of the Vivado Design Suite. Additional hierarchies
were set up for the individual parts of the block design to additionally structure the project.

4. IMPLEMENTATION OF MULTIDIMENSIONAL IMAGE PROCESSING
ALGORITHMS

Based on the framework, a Principal Component Analysis (PCA) algorithm was implemented on the programmable SoC
platform developed in the project. The sequential algorithm was divided into algorithm segments, implemented and
integrated into the framework.

Probably the most commonly used multivariate statistical technique used by almost all scientific disciplines. It reduces
the dimension of the data by eliminating noise and redundancy. This aligns the data to the main components (PC) where
the variance of the data is maximum. The PCA represents an Eigendecomposition (singular value decomposition) of the
input matrix or its correlation or covariance matrix. The resulting Eigenvectors are sorted in descending order according

Proc. of SPIE Vol. 11144 1114404-5

to their magnitude and entered into the factor matrix. Consequently, the first columns of the factor matrix contain the
Eigenvectors with the highest Eigenvalues, which also describe the largest part of the total variance of the input data.
During the subsequent data reduction, relevant information and noise can be separated by meaningful reduction of the
main components and subsequent projection of the input data. This allows hidden information to be identified and
patterns that are not clearly visible in the original data to be highlighted. A good overview of the mathematical
backgrounds is given in [8]. Figure 2 shows an overview of the individual calculation steps required.

Figure 2. Successive calculation steps of a PCA [4].

When applied to the spectral data of a multispectral camera, the individual images, each corresponding to an image
acquisition with a specific wavelength, must be calculated against each other. This assumes that all images of the spectral
data set are stored temporarily for the entire computation time. This requires the image data to be stored in the external
memory. In addition, the intermediate results and the derived image data must be generated, which are also stored in the
memory. The memory connection as well as the memory accesses are therefore essential for the efficient and fast
calculation within the PL. Some development decisions relevant for implementation are outlined below. For in-depth
explanations, please refer to [2], [3] and [4].

4.1 Calculation of the mean values of the spectral image data (data-independent algorithm)

The functionality was implemented in VHDL as IP-core with an AXI4 Lite interface. The 8 bit grey values of the pixels
transmitted one after the other in the data stream of the AXI4 stream are summed in a hardware accumulator (DSP slice).
The last pixel triggers an interrupt so that the PS can access this value via AXI4 Lite. In addition, the image dimensions
are determined by the synchronization signals themselves and made available via AXI4 Lite registers. Thus, the
following calculation section can be dynamically adapted to different acquisition systems.

In contrast to the other calculation steps, the average value of the individual images is not calculated in the processing
branch, but directly during data input. The IP core was added directly after image acquisition. The actual mean value is
calculated from the transferred pixel sum within the PS. Both divisions and multiplications require valuable hardware
resources. Since the determination of the mean value is not time-critical compared to the rest of the calculation, the
division is calculated in the PS in a resource-saving way.

The mean values are stored as IEEE 754 coded floating point numbers in a parameter block on the external memory.
Here, a memory area was organized in a uniform format that is available as shared memory for the PS and all relevant IP
cores of the PL. This means that pSoC-wide work can be carried out on a unified database. However, access rights and
times must be observed.

4.2 Calculation of covariances and creation of the covariance matrix (data-linking algorithm)

The calculation of the individual covariances is the most time-consuming part of the algorithm, since the original data
must be computed with each other. For this purpose, a hardware IP-core was developed and programmed in Vivado
HLS.

The first iteration of the IP-core calculates exactly one covariance between two images. The IP-core reads the image data
autonomously from two RAM addresses via an AXI4 full interface. These are calculated pixel by pixel. The data is
normalized live during the calculation. The RAM addresses and the mean values are transmitted by the PS via an AXI4-

Proc. of SPIE Vol. 11144 1114404-6

Lite interface. At the end of the calculation, the respective covariance is also read out via AXI4-Lite. The IP core itself is
resource-efficient, but requires a high configuration effort and a high memory bandwidth for several calculation runs.
The sequential call of the IP core led to only moderate calculation times of 80 ms per core run, which corresponds to a
total calculation of 6,240 ms.

In order to achieve reduced computing times, the parallelization in the core was increased and at the same time the
multiple readout of single images was minimized. The core was implemented in such a way that as many covariances as
spectral channels exist, are calculated simultaneously. Due to the symmetry of the covariance matrix (mirrored into the
main diagonal), not all calculations are necessary depending on the filter level. To take this fact into account, a
corresponding configuration parameter was implemented.

The RAM addresses of the image data are already transferred during the initial configuration, so that only the respective
mean value and the current filter level have to be transferred to carry out the calculation. The calculations are carried out
in parallel. Since a fixed number of calculations must be implemented in hardware, a maximum of 12 parallel computing
units were realized. This corresponds to the number of spectral channels of the filter wheel camera used as the test setup.
The calculations run in parallel and are called in loops according to the number of pixels.

Through optimization, the computing time could be reduced to an average of 58ms per single core call. With 12 core
runs required, this corresponds to a total calculation time of 697ms.

4.3 Eigendecomposition of the covariance matrix (data-dependent algorithm)

The Eigendecomposition is the most complex calculation step within the overall algorithm, but can be calculated
relatively quickly and requires only the covariance matrix itself. The problem was therefore implemented within the PS.
The eigenvalue problem can only be solved after the last covariance has been calculated. For this purpose, an iteration
method based on QR decomposition with Householder transformation was implemented in the PS. The calculated
eigenvalues and eigenvectors are stored as matrices in the heap memory of the processor. The vectors are sorted by size
as feature vectors.

4.4 Projection of the original data, derivation of the aligned main components (data linking algorithm)

The data is derived via a hardware IP-core programmed in Vivado HLS. The original data is read from the external RAM
via a full AXI4 interface. For the configuration, the necessary RAM addresses of the original data, the corresponding
mean values, the feature vector and the target RAM addresses for the calculated PC are also read from the shared
memory via AXI4 full.

In the IP, additional to the image data, the parameter block must be organized internally. In addition to unsigned integer
values (RAM addresses), float values (mean values and eigenvectors) are also required, which are stored within the
RAM as 32-bit values. This means that, in addition to memory access, a reconversion according to IEEE 754 is also
required. For this configuration, an additional AXI4 full interface was implemented, which enables burst access to the
RAM. The internal memory was implemented using block RAM, which was segmented according to parameter ranges
using compiler pragmas. The individual block RAM areas operate as dual-port RAMs. This enables parallel access to the
individual registers, which minimizes computing time.

A parallel calculation of several PCs requires an enormous amount of resources, especially look-up tables. For the
implementation in the filter wheel camera, where the Core would have to calculate 12 PCs, the utilization of the Core
alone would amount to over 80 percent of the pSoC's resources. Since the first main components already contain most of
the information of the spectral range, only a parallel calculation of three PCs was carried out. Parallel to the calculation,
the mean value of the pixel values is calculated for each resulting image. The average values can be used as an abort
criterion for several runs of the core.

5. CONCLUSION AND FUTURE WORK

In this summary paper, the design of pSoC platforms was explained using the example of the implementation of a PCA
algorithm. The general design process for the embedded implementation of algorithms on pSoC was described.
Important design hints for architectures are given, especially with regard to applications in spectral image processing
with multidimensional data sets. The memory-decoupled realization of image acquisition, image stack processing and
image output is necessary to be able to provide the data of the individual spectral channels independently of the sensor
principle. The processing branches can therefore process image data block by block independently of the sensor clock.

Proc. of SPIE Vol. 11144 1114404-7

In addition, a model was proposed that uses a common parameter block for configuration data in the form of a shared
memory. This ensures a common database at runtime. In addition, the configuration effort of the PS is reduced since IP-
cores in the PL load their configuration data themselves and can therefore work independently. For hardware-software
partitioning, a general classification for algorithms with regard to their access to the database was proposed.

For the research, an implementation was realized that works independently of the spectral recording principle. The
results were evaluated in the form of a filter wheel camera with 12 spectral channels and a one-shot sensor with 9
spectral channels. Independent of the data dimension of the input data, a dimension reduction to three principle
components was realized. The system also offers to calculate low-order PCs, which, however, requires additional
calculation time.

As the number of dimensions within the data increases, a limit value for parallelization must be selected in order to make
sensible use of the limited resources. This decision must be made depending on the algorithm. For the evaluation of the
spectral series a reduction of the data dimension to 3 components is often sufficient, since a large part of the information
is already contained here. The restriction to three components also has the advantage that these can be represented as
colors. A simple possibility would be to interpret the first three components as RGB channels of an image.

Further work includes the implementation of a partial reconfiguration of the processing in the PL. In this way, parts of
the hardware can be reconfigured at runtime and resources can be used more efficiently for processing the individual
algorithm components and a higher degree of parallelization.

ACKNOWLEDGMENT

We thank the federal ministry of education and research for the strong support of this work. The work is related to the
project “Qualimess next generation” (03IPT709X).

REFERENCES

[1] M. Rosenberger and R. Celestre, “Smart multispectral imager for industrial applications,” in IST: 2016 IEEE International
Conference on Imaging Systems & Techniques : October 4-6, 2016, Chania, Crete Island, Greece : proceedings, Chania,
Greece, 2016, pp. 7–12.

[2] M. Schellhorn et al., “Smart parallel spectral imager based on heterogeneous FPGA system on chip,” (en), Engineering for a
Changing World: Proceedings; 59th IWK, Ilmenau Scientific Colloquium, Technische Universität Ilmenau, September 11-15,
2017, vol. 59, 2017, no. WS.3.01, https://www.db-thueringen.de/receive/dbt_mods_00033247, 2017.

[3] M. Schellhorn, R. Fütterer, G. Notni, and M. Rosenberger, “Programmable system on chip implementation of a principal
component analysis for preprocessing of multispectral image data acquired with filter wheel cameras,” in Algorithms and
Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXIV: 17-19 April 2018, Orlando, Florida, United
States, Orlando, United States, 2018, p. 63.

[4] M. Schellhorn and G. Notni, “Optimization of a Principal Component Analysis Implementation on Field-Programmable Gate
Arrays (FPGA) for Analysis of Spectral Images,” in 2018 International Conference on Digital Image Computing: Techniques
and Applications (DICTA): Canberra, Australia, 10 December-13 December 2018, Canberra, Australia, 2018.

[5] Xilinx Inc., UG585 Zynq-7000 All Programmable SoC - Technical Reference Manual (v1.12.2). [Online] Available:
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf. Accessed on: Jun. 07 2019.

[6] J. Reichardt, Lehrbuch Digitaltechnik: Eine Einführung mit VHDL, 2009.
[7] Xilinx Inc., UG761 AXI Reference Guide, v13.1. [Online] Available:

https://www.xilinx.com/support/documentation/ip_documentation/ug 761_axi_reference_guide.pdf. Accessed on: Jun. 07 2019.
[8] L. I. Smith, “A Tutorial on Principal Components Analysis,” Cornell University, USA, vol. 51, p. 52, 2002.

Proc. of SPIE Vol. 11144 1114404-8

